Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
mRNA-mediated glycoengineering ameliorates deficient homing of human stem cell–derived hematopoietic progenitors
Jungmin Lee, … , Robert Sackstein, Derrick J. Rossi
Jungmin Lee, … , Robert Sackstein, Derrick J. Rossi
Published May 8, 2017
Citation Information: J Clin Invest. 2017;127(6):2433-2437. https://doi.org/10.1172/JCI92030.
View: Text | PDF
Brief Report Stem cells Transplantation

mRNA-mediated glycoengineering ameliorates deficient homing of human stem cell–derived hematopoietic progenitors

  • Text
  • PDF
Abstract

Generation of functional hematopoietic stem and progenitor cells (HSPCs) from human pluripotent stem cells (PSCs) has been a long-sought-after goal for use in hematopoietic cell production, disease modeling, and eventually transplantation medicine. Homing of HSPCs from bloodstream to bone marrow (BM) is an important aspect of HSPC biology that has remained unaddressed in efforts to derive functional HSPCs from human PSCs. We have therefore examined the BM homing properties of human induced pluripotent stem cell–derived HSPCs (hiPS-HSPCs). We found that they express molecular effectors of BM extravasation, such as the chemokine receptor CXCR4 and the integrin dimer VLA-4, but lack expression of E-selectin ligands that program HSPC trafficking to BM. To overcome this deficiency, we expressed human fucosyltransferase 6 using modified mRNA. Expression of fucosyltransferase 6 resulted in marked increases in levels of cell surface E-selectin ligands. The glycoengineered cells exhibited enhanced tethering and rolling interactions on E-selectin–bearing endothelium under flow conditions in vitro as well as increased BM trafficking and extravasation when transplanted into mice. However, glycoengineered hiPS-HSPCs did not engraft long-term, indicating that additional functional deficiencies exist in these cells. Our results suggest that strategies toward increasing E-selectin ligand expression could be applicable as part of a multifaceted approach to optimize the production of HSPCs from human PSCs.

Authors

Jungmin Lee, Brad Dykstra, Joel A. Spencer, Laurie L. Kenney, Dale L. Greiner, Leonard D. Shultz, Michael A. Brehm, Charles P. Lin, Robert Sackstein, Derrick J. Rossi

×
Problems with a PDF?

This file is in Adobe Acrobat (PDF) format. If you have not installed and configured the Adobe Acrobat Reader on your system.

Having trouble reading a PDF?

PDFs are designed to be printed out and read, but if you prefer to read them online, you may find it easier if you increase the view size to 125%.

Having trouble saving a PDF?

Many versions of the free Acrobat Reader do not allow Save. You must instead save the PDF from the JCI Online page you downloaded it from. PC users: Right-click on the Download link and choose the option that says something like "Save Link As...". Mac users should hold the mouse button down on the link to get these same options.

Having trouble printing a PDF?

  1. Try printing one page at a time or to a newer printer.
  2. Try saving the file to disk before printing rather than opening it "on the fly." This requires that you configure your browser to "Save" rather than "Launch Application" for the file type "application/pdf", and can usually be done in the "Helper Applications" options.
  3. Make sure you are using the latest version of Adobe's Acrobat Reader.

Supplemental data - Download (2.04 MB)

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts