Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Overcoming therapeutic resistance in glioblastoma: the way forward
Satoru Osuka, Erwin G. Van Meir
Satoru Osuka, Erwin G. Van Meir
Published February 1, 2017
Citation Information: J Clin Invest. 2017;127(2):415-426. https://doi.org/10.1172/JCI89587.
View: Text | PDF
Review

Overcoming therapeutic resistance in glioblastoma: the way forward

  • Text
  • PDF
Abstract

Glioblastoma is the most common and lethal primary malignant brain tumor in adults. Patients die from recurrent tumors that have become resistant to therapy. New strategies are needed to design future therapies that target resistant cells. Recent genomic studies have unveiled the complexity of tumor heterogeneity in glioblastoma and provide new insights into the genomic landscape of tumor cells that survive and initiate tumor recurrence. Resistant cells also co-opt developmental pathways and display stem-like properties; hence we propose to name them recurrence-initiating stem-like cancer (RISC) cells. Genetic alterations and genomic reprogramming underlie the innate and adaptive resistance of RISC cells, and both need to be targeted to prevent glioblastoma recurrence.

Authors

Satoru Osuka, Erwin G. Van Meir

×

Figure 2

Treatment and tumor recurrence in glioblastoma.

Options: View larger image (or click on image) Download as PowerPoint
Treatment and tumor recurrence in glioblastoma.
Top: MRI scans of a pati...
Top: MRI scans of a patient with a primary glioblastoma before treatment, after initial gross total resection followed by chemo- and radiotherapy, and after tumor recurrence. Middle: A cartoon rendering of the associated changes in clonal populations in the tumor at each stage. Surgery successfully removes the tumor and eliminates many subclones. Postoperative chemo- and radiotherapies can further reduce tumor burden around the surgical cavity. However, a small fraction of tumor cells survive and initiate the formation of the recurrent tumor. The length of each line is proportional to the number of mutations acquired between each clone and branching indicates acquisition of divergent mutations. We have proposed calling these surviving cells recurrence-initiating stem-like cancer (RISC) cells. Bottom: Phylogenetic tree showing the process of clonal evolution in the primary tumor, the survival of RISC cells that have acquired adaptive resistance to therapy after initial treatments, and their evolution into a recurrent tumor. The length of each line is proportional to the number of mutations acquired between each clone, and branching indicates acquisition of divergent mutations.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts