Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats
Chunyan Wu, … , Seung-Hoi Koo, Sung-Joon Lee
Chunyan Wu, … , Seung-Hoi Koo, Sung-Joon Lee
Published October 9, 2017
Citation Information: J Clin Invest. 2017;127(11):4118-4123. https://doi.org/10.1172/JCI89344.
View: Text | PDF
Brief Report Metabolism

Olfactory receptor 544 reduces adiposity by steering fuel preference toward fats

  • Text
  • PDF
Abstract

Olfactory receptors (ORs) are present in tissues outside the olfactory system; however, the function of these receptors remains relatively unknown. Here, we determined that olfactory receptor 544 (Olfr544) is highly expressed in the liver and adipose tissue of mice and regulates cellular energy metabolism and obesity. Azelaic acid (AzA), an Olfr544 ligand, specifically induced PKA-dependent lipolysis in adipocytes and promoted fatty acid oxidation (FAO) and ketogenesis in liver, thus shifting the fuel preference to fats. After 6 weeks of administration, mice fed a high-fat diet (HFD) exhibited a marked reduction in adiposity. AzA treatment induced expression of PPAR-α and genes required for FAO in the liver and induced the expression of PPAR-γ coactivator 1-α (Ppargc1a) and uncoupling protein-1 (Ucp1) genes in brown adipose tissue (BAT). Moreover, treatment with AzA increased insulin sensitivity and ketone body levels. This led to a reduction in the respiratory quotient and an increase in the FAO rate, as indicated by indirect calorimetry. AzA treatment had similar antiobesogenic effects in HFD-fed ob/ob mice. Importantly, AzA-associated metabolic changes were completely abrogated in HFD-fed Olfr544–/– mice. To our knowledge, this is the first report to show that Olfr544 orchestrates the metabolic interplay between the liver and adipose tissue, mobilizing stored fats from adipose tissue and shifting the fuel preference to fats in the liver and BAT.

Authors

Chunyan Wu, Su Hyeon Hwang, Yaoyao Jia, Joobong Choi, Yeon-Ji Kim, Dahee Choi, Duleepa Pathiraja, In-Geol Choi, Seung-Hoi Koo, Sung-Joon Lee

×

Figure 3

AzA administration induces hepatic PPAR-α expression and FAO and shifts the fuel preference to fats in HFD-fed WT mice but not in HFD-fed Olfr544–/– mice.

Options: View larger image (or click on image) Download as PowerPoint
AzA administration induces hepatic PPAR-α expression and FAO and shifts ...
(A) Expression levels of Ppargc1a and Ucp1 in HFD-fed mouse interscapular BAT and Prdm16 and Ucp1 expression in HFD-fed mouse inguinal adipose tissue (n = 3). (B) Expression levels of PPAR-α and its responsive genes (n = 3) in HFD-fed mouse livers. (C) FAO in HFD-fed WT (n = 7–8) and Olfr544–/– (n = 5) mouse livers. (D) Indirect calorimetric analysis of HFD-fed WT and (E) Olfr544–/– (n = 3–4) mice. Data are presented as the mean ± SEM. *P < 0.05 and **P < 0.01, by Student’s t test.

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts