Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration
Dechun Feng, … , Xuebin Qin, Bin Gao
Dechun Feng, … , Xuebin Qin, Bin Gao
Published May 9, 2016
Citation Information: J Clin Invest. 2016;126(6):2321-2333. https://doi.org/10.1172/JCI84921.
View: Text | PDF
Technical Advance Immunology

Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration

  • Text
  • PDF
Abstract

Cell ablation is a powerful tool for studying cell lineage and/or function; however, current cell-ablation models have limitations. Intermedilysin (ILY), a cytolytic pore-forming toxin that is secreted by Streptococcus intermedius, lyses human cells exclusively by binding to the human complement regulator CD59 (hCD59), but does not react with CD59 from nonprimates. Here, we took advantage of this feature of ILY and developed a model of conditional and targeted cell ablation by generating floxed STOP-CD59 knockin mice (ihCD59), in which expression of human CD59 only occurs after Cre-mediated recombination. The administration of ILY to ihCD59+ mice crossed with various Cre-driver lines resulted in the rapid and specific ablation of immune, epithelial, or neural cells without off-target effects. ILY had a large pharmacological window, which allowed us to perform dose-dependent studies. Finally, the ILY/ihCD59-mediated cell-ablation method was tested in several disease models to study immune cell functionalities, hepatocyte and/or biliary epithelial damage and regeneration, and neural cell damage. Together, the results of this study demonstrate the utility of the ihCD59 mouse model for studying the effects of cell ablation in specific organ systems in a variety of developmental and disease states.

Authors

Dechun Feng, Shen Dai, Fengming Liu, Yosuke Ohtake, Zhou Zhou, Hua Wang, Yonggang Zhang, Alison Kearns, Xiao Peng, Faliang Zhu, Umar Hayat, Man Li, Yong He, Mingjiang Xu, Chunling Zhao, Min Cheng, Lining Zhang, Hong Wang, Xiaofeng Yang, Cynthia Ju, Elizabeth C. Bryda, Jennifer Gordon, Kamel Khalili, Wenhui Hu, Shuxin Li, Xuebin Qin, Bin Gao

×

Figure 5

Application of the ihCD59 model in the study of chronic EAE pathogenesis.

Options: View larger image (or click on image) Download as PowerPoint
Application of the ihCD59 model in the study of chronic EAE pathogenesis...
Several lines of Cre+ihCD59+ mice were given MOG immunization; 3 days later, ILY was injected (i.p., 100 ng/g, daily) for 14 days, and mice were euthanized 20 days after MOG immunization. (A) Clinical EAE scores (n = 8). *P < 0.05; **P < 0.01; ***P < 0.001 (vs. ihCD59+ group, as determined by 2-way ANOVA followed by Bonferroni’s post-hoc test). (B) Analysis of transverse sections of the spinal cord by immunostaining for MBP (upper panel) and neurofilament (lower panel). Representative images from 8 mice are shown. In all of the sections, dorsal is up. Scale bar: 250 μm. (C) The levels of myelin signals as stained by MBP and axonal signals as labeled by neurofilament (NF) in different white matter areas of transverse sections from various groups of mice were determined (n = 8). Values represent mean ± SD. **P < 0.01; ***P < 0.001 (vs. EAE ihCD59+ as indicated in the figure were determined by 1-way ANOVA followed by Dunnett’s post-hoc test).
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts