Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

How do reducing equivalents increase insulin secretion?
Alan D. Attie
Alan D. Attie
Published September 21, 2015
Citation Information: J Clin Invest. 2015;125(10):3754-3756. https://doi.org/10.1172/JCI84011.
View: Text | PDF
Commentary

How do reducing equivalents increase insulin secretion?

  • Text
  • PDF
Abstract

Glucose stimulation of insulin secretion in pancreatic β cells involves cell depolarization and subsequent opening of voltage-dependent Ca2+ channels to elicit insulin granule exocytosis. This pathway alone does not account for the entire magnitude of the secretory response in β cells. In this issue, Ferdaoussi, Dai, and colleagues reveal that insulin secretion is amplified by cytosolic isocitrate dehydrogenase–dependent transfer of reducing equivalents, which generates NADPH and reduced glutathione, which in turn activates sentrin/SUMO-specific protease-1 (SENP1). β Cell–specific deletion of Senp1 in murine models reduced the amplification of insulin exocytosis, resulting in impaired glucose tolerance. Further, their studies demonstrate that restoring intracellular NADPH or activating SENP1 improves insulin exocytosis in human β cells from donors with type 2 diabetes, suggesting a potential therapeutic target to augment insulin production.

Authors

Alan D. Attie

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 282 31
PDF 82 19
Figure 87 2
Citation downloads 88 0
Totals 539 52
Total Views 591

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts