Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation
Anuradha Ray, Lauren Cohn
Anuradha Ray, Lauren Cohn
Published October 15, 1999
Citation Information: J Clin Invest. 1999;104(8):985-993. https://doi.org/10.1172/JCI8204.
View: Text | PDF
Perspective

Th2 cells and GATA-3 in asthma: new insights into the regulation of airway inflammation

  • Text
  • PDF
Abstract

Authors

Anuradha Ray, Lauren Cohn

×

Figure 2

Options: View larger image (or click on image) Download as PowerPoint
Molecular mechanisms of differentiation of a naive CD4+ T cell into Th2 ...
Molecular mechanisms of differentiation of a naive CD4+ T cell into Th2 cells. A naive CD4+ T cell contains a condensed chromatin structure with extensive methylation. Antigen stimulation and engagement of the IL-4R result in STAT6 activation, which, in turn, causes specific demethylation around the IL-4/IL-5/IL-13 locus (similarly, antigen + IL-12 causes demethylation around the IFN-γ locus). Chromatin remodeling is accompanied by induction of Th2-specific transcription factors such as GATA-3 and c-Maf, which bind to target sequences in the IL-4/IL-5/IL-13 locus. The chromatin — rendered accessible by demethylation and perhaps by binding of GATA-3, c-Maf, and other, currently undiscovered Th2-specific transcription factors — is next bound by more widely expressed and transiently induced transcription factors such as AP-1, NF-κB, NF-ATc, and C/EBPβ. This may allow synergistic interactions between the tissue-specific and general transcription factors to occur, resulting in the active transcription of the IL-4, IL-5, and IL-13 genes. Effector/memory cells are thought to be in a state of suspended animation, with an open chromatin structure and high levels of GATA-3 and c-Maf expression. Restimulation of these cells by antigen would result in transient induction of the general factors leading to rapid induction of Th2 gene expression.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts