Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Healing the injured vessel wall using microRNA-facilitated gene delivery
Mark W. Feinberg
Mark W. Feinberg
Published August 18, 2014
Citation Information: J Clin Invest. 2014;124(9):3694-3697. https://doi.org/10.1172/JCI77509.
View: Text | PDF
Commentary

Healing the injured vessel wall using microRNA-facilitated gene delivery

  • Text
  • PDF
Abstract

Drug-eluting stents have emerged as potent weapons in the treatment of patients with symptomatic coronary artery disease by reducing restenosis rates; however, a significant clinical consequence of these stents is delayed reendothelialization, which may increase the risk of late stent thrombosis. In this issue of the JCI, Santulli and colleagues generated an adenovirus that expresses the cyclin-dependent kinase inhibitor p27Kip1 (p27) and bears four tandem copies of target sequences for the endothelial cell–enriched microRNA (miRNA) miR-126-3p (Ad-p27-126TS) in an attempt to specifically reduce proliferation of vascular smooth muscle cells, but not endothelial cells. Indeed, delivery of Ad-p27-126TS to balloon-injured arteries in rats not only induced faster and more complete reendothelialization, but also effectively improved neointimal hyperplasia, hypercoagulability, and vasoreactivity. Collectively, these findings provide a cogent foundation for the potential therapeutic use of miRNA-facilitated gene delivery strategies to heal vessel wall injury.

Authors

Mark W. Feinberg

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 237 17
PDF 59 15
Figure 41 1
Citation downloads 43 0
Totals 380 33
Total Views 413

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts