Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Insulin, osteoblasts, and energy metabolism: why bone counts calories
Ryan C. Riddle, Thomas L. Clemens
Ryan C. Riddle, Thomas L. Clemens
Published March 18, 2014
Citation Information: J Clin Invest. 2014;124(4):1465-1467. https://doi.org/10.1172/JCI75554.
View: Text | PDF
Commentary

Insulin, osteoblasts, and energy metabolism: why bone counts calories

  • Text
  • PDF
Abstract

Recent studies have demonstrated that insulin stimulates bone cells to produce and activate osteocalcin, an endocrine hormone that increases the efficiency of glucose metabolism through its actions on the pancreas and other peripheral tissues. In this issue of the JCI, Wei and colleagues directly explore the contribution of insulin signaling in osteoblasts to the disturbances in whole-body glucose metabolism associated with a high-fat diet. In mice fed a high-fat diet, increased uptake of saturated fatty acids by the osteoblast accelerates the ubiquitination and degradation of the insulin receptor. In this setting, impairments in osteoblast insulin signaling reduce serum levels of undercarboxylated osteocalcin, which in turn exacerbate insulin resistance in muscle and white adipose tissue. These findings underscore the importance of insulin-responsive skeletal cells as components of a newly appreciated endocrine network critical for regulating global energy homeostasis.

Authors

Ryan C. Riddle, Thomas L. Clemens

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 386 293
PDF 70 33
Citation downloads 60 0
Totals 516 326
Total Views 842
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts