Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Development and translational imaging of a TP53 porcine tumorigenesis model
Jessica C. Sieren, … , Dawn E. Quelle, Christopher S. Rogers
Jessica C. Sieren, … , Dawn E. Quelle, Christopher S. Rogers
Published August 8, 2014
Citation Information: J Clin Invest. 2014;124(9):4052-4066. https://doi.org/10.1172/JCI75447.
View: Text | PDF
Technical Advance Oncology

Development and translational imaging of a TP53 porcine tumorigenesis model

  • Text
  • PDF
Abstract

Cancer is the second deadliest disease in the United States, necessitating improvements in tumor diagnosis and treatment. Current model systems of cancer are informative, but translating promising imaging approaches and therapies to clinical practice has been challenging. In particular, the lack of a large-animal model that accurately mimics human cancer has been a major barrier to the development of effective diagnostic tools along with surgical and therapeutic interventions. Here, we developed a genetically modified porcine model of cancer in which animals express a mutation in TP53 (which encodes p53) that is orthologous to one commonly found in humans (R175H in people, R167H in pigs). TP53R167H/R167H mutant pigs primarily developed lymphomas and osteogenic tumors, recapitulating the tumor types observed in mice and humans expressing orthologous TP53 mutant alleles. CT and MRI imaging data effectively detected developing tumors, which were validated by histopathological evaluation after necropsy. Molecular genetic analyses confirmed that these animals expressed the R167H mutant p53, and evaluation of tumors revealed characteristic chromosomal instability. Together, these results demonstrated that TP53R167H/R167H pigs represent a large-animal tumor model that replicates the human condition. Our data further suggest that this model will be uniquely suited for developing clinically relevant, noninvasive imaging approaches to facilitate earlier detection, diagnosis, and treatment of human cancers.

Authors

Jessica C. Sieren, David K. Meyerholz, Xiao-Jun Wang, Bryan T. Davis, John D. Newell Jr., Emily Hammond, Judy A. Rohret, Frank A. Rohret, Jason T. Struzynski, J. Adam Goeken, Paul W. Naumann, Mariah R. Leidinger, Agshin Taghiyev, Richard Van Rheeden, Jussara Hagen, Benjamin W. Darbro, Dawn E. Quelle, Christopher S. Rogers

×

Figure 5

Osteogenic tumor a in a TP53R167H/R167H pig.

Options: View larger image (or click on image) Download as PowerPoint
Osteogenic tumor a in a TP53R167H/R167H pig.
In vivo imaging of case 6 w...
In vivo imaging of case 6 with CT, showing coronal and sagittal cross-sectional views. (A) Whereas views from time point 1 showed no evidence of tumor lesion, views from time point 2 in CT and MRI (51 days later) revealed aggressive tumor growth (39 mm). (B and C) The extradural mass (arrows, B) expanded into the cranial vault (arrows, C), compressing the brain. (D) The mass (asterisks) invaded into the frontal sinus cavity. (E) The calvarial mass was composed of round to spindle cells that produced irregular trabeculae of osteoid (asterisks). (F) The neoplastic cells had varying sized nuclei with a prominent nucleoli (arrows). Original magnification, ×200 (E); ×600 (F).
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts