Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication
Jan Kristoff, … , Cristian Apetrei, Ivona Pandrea
Jan Kristoff, … , Cristian Apetrei, Ivona Pandrea
Published May 16, 2014
Citation Information: J Clin Invest. 2014;124(6):2802-2806. https://doi.org/10.1172/JCI75090.
View: Text | PDF
Brief Report

Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication

  • Text
  • PDF
Abstract

Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS.

Authors

Jan Kristoff, George Haret-Richter, Dongzhu Ma, Ruy M. Ribeiro, Cuiling Xu, Elaine Cornell, Jennifer L. Stock, Tianyu He, Adam D. Mobley, Samantha Ross, Anita Trichel, Cara Wilson, Russell Tracy, Alan Landay, Cristian Apetrei, Ivona Pandrea

×

Figure 3

Sevelamer treatment during early SIVsab infection of PTMs results in reduction of immune activation, inflammation, and viral replication.

Options: View larger image (or click on image) Download as PowerPoint
Sevelamer treatment during early SIVsab infection of PTMs results in red...
Significant differences were observed between SIVsab-infected PTMs receiving sevelamer (red) and untreated controls (blue) with regard to (A) Ki67 expression by CD4+ T cells, (B) Ki67 expression by CD8+ T cells, (C) HLA-DR expression by CD8+ T cells, (D) HLA-DR expression by CD4+ T cells, (E) levels of proinflammatory cytokines (illustrated here by IL-1b), (F) levels of CRP, (G) levels of D-dimer, and (H) viral loads. The P values were assessed as long-term differences in temporal dynamics and obtained using mixed-effects models. vRNA, viral RNA.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts