Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
No quiet surrender: molecular guardians in multiple sclerosis brain
Lawrence Steinman
Lawrence Steinman
View: Text | PDF
Review

No quiet surrender: molecular guardians in multiple sclerosis brain

  • Text
  • PDF
Abstract

The brain under immunological attack does not surrender quietly. Investigation of brain lesions in multiple sclerosis (MS) reveals a coordinated molecular response involving various proteins and small molecules ranging from heat shock proteins to small lipids, neurotransmitters, and even gases, which provide protection and foster repair. Reduction of inflammation serves as a necessary prerequisite for effective recovery and regeneration. Remarkably, many lesion-resident molecules activate pathways leading to both suppression of inflammation and promotion of repair mechanisms. These guardian molecules and their corresponding physiologic pathways could potentially be exploited to silence inflammation and repair the injured and degenerating brain and spinal cord in both relapsing-remitting and progressive forms of MS and may be beneficial in other neurologic and psychiatric conditions.

Authors

Lawrence Steinman

×

Figure 2

Mechanism of action of dimethylfumarate in the NRF2 pathway.

Options: View larger image (or click on image) Download as PowerPoint
Mechanism of action of dimethylfumarate in the NRF2 pathway.
Inflammatio...
Inflammation and oxidative stress are thought to promote tissue damage and MS, and recent data point to a protective role for antioxidant pathways, including the transcription factor NRF2, in MS. The drug dimethylfumarate, which targets the NRF2 pathway, is approved for treatment of RRMS and is under investigation in clinical trials for progressive forms of MS. Dimethylfumarate has pleiotropic mechanisms of action, but activation of NRF2 accounts for some of its antiinflammatory activity. (A) KEAP1, which is part of a cullin family E3 ubiquitin ligase complex, normally mediates ubiquitination and proteasomal degradation of NRF2. (B) When KEAP1 undergoes sulfhydration of cysteine 151 via binding of fumarate, it becomes unable to interact with NRF2, which accumulates in the nucleus and induces the expression of NRF2-dependent antioxidant and cytoprotective genes. Activation of NRF2 leads to increased production of a spectrum of antioxidants, including glutathione and cystathionine.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts