Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9
Rajat M. Gupta, Kiran Musunuru
Rajat M. Gupta, Kiran Musunuru
Published October 1, 2014
Citation Information: J Clin Invest. 2014;124(10):4154-4161. https://doi.org/10.1172/JCI72992.
View: Text | PDF
Review

Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9

  • Text
  • PDF
Abstract

The past decade has been one of rapid innovation in genome-editing technology. The opportunity now exists for investigators to manipulate virtually any gene in a diverse range of cell types and organisms with targeted nucleases designed with sequence-specific DNA-binding domains. The rapid development of the field has allowed for highly efficient, precise, and now cost-effective means by which to generate human and animal models of disease using these technologies. This review will outline the recent development of genome-editing technology, culminating with the use of CRISPR-Cas9 to generate novel mammalian models of disease. While the road to using this same technology for treatment of human disease is long, the pace of innovation over the past five years and early successes in model systems build anticipation for this prospect.

Authors

Rajat M. Gupta, Kiran Musunuru

×

Figure 1

Repair of DSBs.

Options: View larger image (or click on image) Download as PowerPoint
Repair of DSBs.
With the creation of each DSB, two DNA repair processes ...
With the creation of each DSB, two DNA repair processes proceed in concert. HDR results in high-fidelity repair using a template strand. If desired, an exogenous oligonucleotide sequence can be introduced to achieve site-specific mutagenesis. NHEJ yields WT clones as well as clones with frameshift/indel mutations through its inherently more error-prone mechanism of repair.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts