Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews...
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • Allergy (Apr 2019)
    • Biology of familial cancer predisposition syndromes (Feb 2019)
    • Mitochondrial dysfunction in disease (Aug 2018)
    • Lipid mediators of disease (Jul 2018)
    • Cellular senescence in human disease (Apr 2018)
    • View all review series...
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Scientific Show Stoppers
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • About
  • Editors
  • Consulting Editors
  • For authors
  • Current issue
  • Past issues
  • By specialty
  • Subscribe
  • Alerts
  • Advertise
  • Contact
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • Brief Reports
  • Technical Advances
  • Commentaries
  • Editorials
  • Hindsight
  • Review series
  • Reviews
  • The Attending Physician
  • First Author Perspectives
  • Scientific Show Stoppers
  • Top read articles
  • Concise Communication
Human IgG Fc domain engineering enhances antitoxin neutralizing antibody activity
Stylianos Bournazos, … , Arturo Casadevall, Jeffrey V. Ravetch
Stylianos Bournazos, … , Arturo Casadevall, Jeffrey V. Ravetch
Published February 3, 2014; First published January 9, 2014
Citation Information: J Clin Invest. 2014;124(2):725-729. https://doi.org/10.1172/JCI72676.
View: Text | PDF
Categories: Brief Report Immunology

Human IgG Fc domain engineering enhances antitoxin neutralizing antibody activity

  • Text
  • PDF
Abstract

The effector activity of antibodies is dependent on engagement with Fcγ receptors (FcγRs) and activation of the associated intracellular signaling pathways. Preclinical evaluation of therapeutic humanized or chimeric mAbs to study the interactions of their Fc regions with FcγRs is hampered by substantial structural and functional FcγR diversity among species. In this report, we used mice expressing only human FcγRs to evaluate the contribution of FcγR-mediated pathways to the neutralizing activity of an anti-anthrax toxin chimeric mAb. We observed that the protective activity of this mAb was highly dependent upon FcγR engagement, with minimal protection against anthrax toxin observed in FcγR-deficient mice following mAb administration. We generated anti-anthrax toxin mAbs with specific Fc domain variants with selectively enhanced affinity for particular human FcγRs and assessed their activity in FcγR-humanized mice. We determined that Fc domain variants that were capable of selectively engaging activating FcγRs substantially enhanced the in vitro and in vivo activity of anthrax toxin-neutralizing antibodies. These findings indicate that the application of Fc domain engineering is a feasible strategy to enhance toxin-neutralizing activity and suggest that engineered antitoxin antibodies will have improved therapeutic efficacy.

Authors

Stylianos Bournazos, Siu-Kei Chow, Nareen Abboud, Arturo Casadevall, Jeffrey V. Ravetch

×

Figure 2

FcγR requirement for the neutralizing activity of the anti-PA mouse-human chimeric mAb.

Options: View larger image (or click on image) Download as PowerPoint
FcγR requirement for the neutralizing activity of the anti-PA mouse-huma...
(A) The protective activity of 19D9 hIgG1 against anthrax LeTx was compared in BMDMs obtained either from humanized FcγR (wild-type) or FcγR-deficient (FcγRαnull) mice. n = 4; ***P < 0.0001; n = 4. (B) Human FcγR expression profile of BMDMs from humanized FcγR (solid black line) or FcγRαnull (solid gray filled) mice (isotype control; dotted line). (C) Comparison of the protective activity of 19D9 hIgG1 (750 μg i.p.) in humanized FcγR and FcγRαnull mice following challenge with B. anthracis Sterne strain. n = 5 per group; **P = 0.005, FcγRαnull vs. humanized FcγR.
Follow JCI:
Copyright © 2019 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts