Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE
Hui Chen, Julian C. Assmann, Antje Krenz, Mahbubur Rahman, Myriam Grimm, Christian M. Karsten, Jörg Köhl, Stefan Offermanns, Nina Wettschureck, Markus Schwaninger
Hui Chen, Julian C. Assmann, Antje Krenz, Mahbubur Rahman, Myriam Grimm, Christian M. Karsten, Jörg Köhl, Stefan Offermanns, Nina Wettschureck, Markus Schwaninger
View: Text | PDF
Brief Report Immunology

Hydroxycarboxylic acid receptor 2 mediates dimethyl fumarate’s protective effect in EAE

  • Text
  • PDF
Abstract

Taken orally, the drug dimethyl fumarate (DMF) has been shown to improve functional outcomes for patients with MS; however, it is unclear how DMF mediates a protective effect. DMF and, more so, its active metabolite, monomethyl fumarate, are known agonists of the hydroxycarboxylic acid receptor 2 (HCA2), a G protein–coupled membrane receptor. Here, we evaluated the contribution of HCA2 in mediating the protective effect afforded by DMF in EAE, a mouse model of MS. DMF treatment reduced neurological deficit, immune cell infiltration, and demyelination of the spinal cords in wild-type mice, but not in Hca2–/– mice, indicating that HCA2 is required for the therapeutic effect of DMF. In particular, DMF decreased the number of infiltrating neutrophils in a HCA2-dependent manner, likely by interfering with neutrophil adhesion to endothelial cells and chemotaxis. Together, our data indicate that HCA2 mediates the therapeutic effects of DMF in EAE. Furthermore, identification of HCA2 as a molecular target may help to optimize MS therapy.

Authors

Hui Chen, Julian C. Assmann, Antje Krenz, Mahbubur Rahman, Myriam Grimm, Christian M. Karsten, Jörg Köhl, Stefan Offermanns, Nina Wettschureck, Markus Schwaninger

×

Figure 2

DMF treatment reduces neutrophil infiltration into the spinal cords in wild-type mice but not in Hca2–/– mice with EAE.

Options: View larger image (or click on image) Download as PowerPoint
DMF treatment reduces neutrophil infiltration into the spinal cords in w...
The number of (A) CD45+CD4+ T helper cells, (B) CD45+CD8+ T cytotoxic cells, (C) CD45+CD11b+ macrophages, (D) CD45+Ly-6G+ neutrophils, and (E) CD45+CD11c+ dendritic cells in the spinal cord was quantified by flow cytometry on dpi 17. DMF or vehicle were given orally (30 mg/kg body weight, twice per day) starting from dpi 3. Results are expressed relative to the vehicle group of the same genotype. Data are mean ± SEM from 14 to 15 mice per group. *P < 0.05 (Student’s t test with Bonferroni correction).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts