Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Usage Information

Lack of protease inhibitor resistance following treatment failure — too good to be true?
John A. Bartlett
John A. Bartlett
Published August 27, 2013
Citation Information: J Clin Invest. 2013;123(9):3704-3705. https://doi.org/10.1172/JCI71784.
View: Text | PDF
The Attending Physician

Lack of protease inhibitor resistance following treatment failure — too good to be true?

  • Text
  • PDF
Abstract

A 29-year-old man with recently diagnosed HIV infection and a CD4 cell count of 225/mm3 began treatment with atazanavir (300 mg), ritonavir (100 mg), emtricitabine (200 mg), and tenofovir (300 mg) daily. For 18 months, he was treatment adherent and his plasma HIV RNA level was below the limit of detection. He then began a relationship with a new partner, who introduced him to methamphetamines. His medication adherence became erratic, and he missed appointments in clinic. Eventually. he was hospitalized for rehabilitation, and he resumed taking his medications on schedule. Following his discharge, he was found to have a plasma HIV RNA level of 11,400 copies/ml. Genotypic resistance testing revealed only an M184V mutation associated with emtricitabine resistance. A decision regarding his next treatment regimen needs to be made.

Authors

John A. Bartlett

×

Usage data is cumulative from January 2020 through January 2021.

Usage JCI PMC
Text version 189 22
PDF 51 23
Citation downloads 8 0
Totals 248 45
Total Views 293

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts