Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells
Ute E. Burkhardt, … , Edwin P. Alyea, Catherine J. Wu
Ute E. Burkhardt, … , Edwin P. Alyea, Catherine J. Wu
Published August 5, 2013
Citation Information: J Clin Invest. 2013;123(9):3756-3765. https://doi.org/10.1172/JCI69098.
View: Text | PDF
Clinical Medicine Clinical trials

Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells

  • Text
  • PDF
Abstract

Background. Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity.

Methods. We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF–secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated.

Results. At a median follow-up of 2.9 (range, 1–4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%–94%) and 88% (95% CI, 59%–97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%–33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens.

Conclusion. Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT.

Trial registration. Clinicaltrials.gov NCT00442130.

Funding. NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.

Authors

Ute E. Burkhardt, Ursula Hainz, Kristen Stevenson, Natalie R. Goldstein, Mildred Pasek, Masayasu Naito, Di Wu, Vincent T. Ho, Anselmo Alonso, Naa Norkor Hammond, Jessica Wong, Quinlan L. Sievers, Ana Brusic, Sean M. McDonough, Wanyong Zeng, Ann Perrin, Jennifer R. Brown, Christine M. Canning, John Koreth, Corey Cutler, Philippe Armand, Donna Neuberg, Jeng-Shin Lee, Joseph H. Antin, Richard C. Mulligan, Tetsuro Sasada, Jerome Ritz, Robert J. Soiffer, Glenn Dranoff, Edwin P. Alyea, Catherine J. Wu

×

Figure 1

Clinical protocol schema.

Options: View larger image (or click on image) Download as PowerPoint
Clinical protocol schema.
The study protocol was divided into two phases...
The study protocol was divided into two phases: (a) collection of autologous CLL cells from peripheral blood (PB), bone marrow (BM), or lymph node (LN), after which subjects underwent salvage chemotherapy; and (b) treatment, which included RIC, subsequent PBSC infusion, and posttransplant vaccination (up to 6 vaccine doses consisting of irradiated autologous tumor cells together with irradiated GM-CSF– secreting bystander cells) between posttransplant days 30 and 100, while maintaining stable GvHD prophylaxis.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts