Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix
Mahboobe Ghaedi, Elizabeth A. Calle, Julio J. Mendez, Ashley L. Gard, Jenna Balestrini, Adam Booth, Peter F. Bove, Liqiong Gui, Eric S. White, Laura E. Niklason
Mahboobe Ghaedi, Elizabeth A. Calle, Julio J. Mendez, Ashley L. Gard, Jenna Balestrini, Adam Booth, Peter F. Bove, Liqiong Gui, Eric S. White, Laura E. Niklason
View: Text | PDF
Technical Advance Pulmonology

Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix

  • Text
  • PDF
Abstract

The use of induced pluripotent stem cells (iPSCs) has been postulated to be the most effective strategy for developing patient-specific respiratory epithelial cells, which may be valuable for lung-related cell therapy and lung tissue engineering. We generated a relatively homogeneous population of alveolar epithelial type II (AETII) and type I (AETI) cells from human iPSCs that had phenotypic properties similar to those of mature human AETII and AETI cells. We used these cells to explore whether lung tissue can be regenerated in vitro. Consistent with an AETII phenotype, we found that up to 97% of cells were positive for surfactant protein C, 95% for mucin-1, 93% for surfactant protein B, and 89% for the epithelial marker CD54. Additionally, exposing induced AETII to a Wnt/β-catenin inhibitor (IWR-1) changed the iPSC-AETII–like phenotype to a predominantly AETI-like phenotype. We found that of induced AET1 cells, more than 90% were positive for type I markers, T1α, and caveolin-1. Acellular lung matrices were prepared from whole rat or human adult lungs treated with decellularization reagents, followed by seeding these matrices with alveolar cells derived from human iPSCs. Under appropriate culture conditions, these progenitor cells adhered to and proliferated within the 3D lung tissue scaffold and displayed markers of differentiated pulmonary epithelium.

Authors

Mahboobe Ghaedi, Elizabeth A. Calle, Julio J. Mendez, Ashley L. Gard, Jenna Balestrini, Adam Booth, Peter F. Bove, Liqiong Gui, Eric S. White, Laura E. Niklason

×

Figure 4

Functional characterization of AETI cells derived from iPSCs, day 29 of differentiation (C1 clone).

Options: View larger image (or click on image) Download as PowerPoint
Functional characterization of AETI cells derived from iPSCs, day 29 of ...
(A and B) Immunofluorescent staining of alveolar type I marker (A) T1α (B) caveolin-1. Scale bar: 63 μm. (C) Flow cytometry analysis for the percentage of positive cells for alveolar type I marker at day 29 in the presence and absence of IWR-1. (y axis, percentage of positive cells). (D) qRT-PCR analysis in AETI cells as compared with native human type I (AETI) cells, from 3 independent experiments. Values from the triplicate PCR reactions for a GOI (AQ5, T1α, caveolin-1) were normalized against average GAPDH Ct values from the same cDNA sample. Fold change of GOI transcript levels between iPS-derived AETI and human type I cells equals 2–ΔΔCt, where ΔCt = Ct(GOI) – Ct(GAPDH) and ΔΔCt = ΔCt(AETI) – ΔCt(hAETI). (y axis, relative gene expression compared with human type I cells). Bars indicate ± SEM and n = 3 independent experiments for qRT-PCR, ELISA, and flow cytometry.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts