Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Bathing the brain
Warren J. Strittmatter
Warren J. Strittmatter
Published February 22, 2013
Citation Information: J Clin Invest. 2013;123(3):1013-1015. https://doi.org/10.1172/JCI68241.
View: Text | PDF
Commentary

Bathing the brain

  • Text
  • PDF
Abstract

The brain and spinal cord are surrounded by cerebrospinal fluid, which provides a mechanically stable environment for these delicate structures against the forces of gravity and sudden acceleration and deceleration. Neurons and glia comprising the parenchyma of the brain are enveloped in their microenvironment by interstitial fluid. Interstitial fluid has long been considered to be unaffected by the production and flow of cerebrospinal fluid outside the brain parenchyma. However, two recent papers by Iliff et al. demonstrate that cerebrospinal fluid enters the deep substance of the brain, mixes with the interstitial fluid surrounding neurons and glia, and plays an important role in the exchange and clearance of molecules in the interstitial space of the central nervous system.

Authors

Warren J. Strittmatter

×

Figure 1

CSF and its traffic to the lymphatic system.

Options: View larger image (or click on image) Download as PowerPoint
CSF and its traffic to the lymphatic system.
(A) Formation and major egr...
(A) Formation and major egress pathways of CSF. CSF is produced primarily at the choroid plexus of the lateral ventricles (i) and transits through the ventricles of the brain to eventually enter the subarachnoid space surrounding the brain and spinal cord (ii). The primary route of egress of CSF occurs at the arachnoid granulations of large draining veins (iii). CSF also drains into the cervical lymphatic system through the cribriform plate (iv) and through nerve sheaths (v). CSF enters the interstitial fluid compartment in brain parenchyma via the paravascular pathway (vi). This figure was published in: Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. European Annals of Otorhinolaryngology, Head and Neck Diseases 2011;128(6):309:316. Copyright © 2013 Elsevier Masson SAS. All rights reserved (4). (B) The paravascular system. CSF enters brain parenchyma along the Virchow-Robin space surrounding large penetrating arteries (i). CSF then transits around, or through, the end feet of astrocytes that largely surround the microvasculature (ii). CSF then mixes with and transports interstitial fluid (iii), which then enters the Virchow-Robin space surrounding exiting veins and reenters the subarachnoid space or drains to cervical lymphatics (iv). Modified with permission from Science Translational Medicine (5).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts