Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance
János Peti-Peterdi
János Peti-Peterdi
Published June 24, 2013
Citation Information: J Clin Invest. 2013;123(7):2788-2790. https://doi.org/10.1172/JCI68095.
View: Text | PDF
Commentary

Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance

  • Text
  • PDF
Abstract

Intrarenal control mechanisms play an important role in the maintenance of body fluid and electrolyte balance and pH homeostasis. Recent discoveries of new ion transport and regulatory pathways in the distal nephron and collecting duct system have helped to better our understanding of these critical kidney functions and identified new potential therapeutic targets and approaches. In this issue of the JCI, Tokonami et al. report on the function of an exciting new paracrine mediator, the mitochondrial the citric acid (TCA) cycle intermediate α-ketoglutarate (αKG), which via its OXGR1 receptor plays an unexpected, nontraditional role in the adaptive regulation of renal HCO3– secretion and salt reabsorption.

Authors

János Peti-Peterdi

×

Figure 1

Illustration of the renal expression and functions of mitochondrial TCA cycle intermediates in the regulation of body fluid and acid-base balance.

Options: View larger image (or click on image) Download as PowerPoint
Illustration of the renal expression and functions of mitochondrial TCA ...
In addition to the collecting duct, Sucnr1 is expressed in the macula densa (MD) segment of the distal nephron and mediates succinate-induced renin release from the adjacent juxtaglomerular cell (JGC) via paracrine signaling. αKG in the tubular fluid mediates a paracrine crosstalk between proximal and distal nephron segments. Via OXGR1 expressed in type B (and also in non-A–non-B) intercalated cells (ICs) of the distal nephron and collecting duct, αKG regulates HCO3– secretion and electroneutral transepithelial NaCl reabsorption. These intrarenal mechanisms appear to play important new roles in the regulation of body fluid and electrolyte balance and acid-base homeostasis. Adapted with permission from Physiology (12). RAS, renin-angiotensin system.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts