Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Atrial natriuretic peptide is negatively regulated by microRNA-425
Pankaj Arora, Connie Wu, Abigail May Khan, Donald B. Bloch, Brandi N. Davis-Dusenbery, Anahita Ghorbani, Ester Spagnolli, Andrew Martinez, Allicia Ryan, Laurel T. Tainsh, Samuel Kim, Jian Rong, Tianxiao Huan, Jane E. Freedman, Daniel Levy, Karen K. Miller, Akiko Hata, Federica del Monte, Sara Vandenwijngaert, Melissa Swinnen, Stefan Janssens, Tara M. Holmes, Emmanuel S. Buys, Kenneth D. Bloch, Christopher Newton-Cheh, Thomas J. Wang
Pankaj Arora, Connie Wu, Abigail May Khan, Donald B. Bloch, Brandi N. Davis-Dusenbery, Anahita Ghorbani, Ester Spagnolli, Andrew Martinez, Allicia Ryan, Laurel T. Tainsh, Samuel Kim, Jian Rong, Tianxiao Huan, Jane E. Freedman, Daniel Levy, Karen K. Miller, Akiko Hata, Federica del Monte, Sara Vandenwijngaert, Melissa Swinnen, Stefan Janssens, Tara M. Holmes, Emmanuel S. Buys, Kenneth D. Bloch, Christopher Newton-Cheh, Thomas J. Wang
View: Text | PDF
Brief Report Cardiology

Atrial natriuretic peptide is negatively regulated by microRNA-425

  • Text
  • PDF
Abstract

Numerous common genetic variants have been linked to blood pressure, but no underlying mechanism has been elucidated. Population studies have revealed that the variant rs5068 (A/G) in the 3′ untranslated region of NPPA, the gene encoding atrial natriuretic peptide (ANP), is associated with blood pressure. We selected individuals on the basis of rs5068 genotype (AG vs. AA) and fed them a low- or high-salt diet for 1 week, after which they were challenged with an intravenous saline infusion. On both diets, before and after saline administration, ANP levels were up to 50% higher in AG individuals than in AA individuals, a difference comparable to the changes induced by high-salt diet or saline infusion. In contrast, B-type natriuretic peptide levels did not differ by rs5068 genotype. We identified a microRNA, miR-425, that is expressed in human atria and ventricles and is predicted to bind the sequence spanning rs5068 for the A, but not the G, allele. miR-425 silenced NPPA mRNA in an allele-specific manner, with the G allele conferring resistance to miR-425. This study identifies miR-425 as a regulator of ANP production, raising the possibility that miR-425 antagonists could be used to treat disorders of salt overload, including hypertension and heart failure.

Authors

Pankaj Arora, Connie Wu, Abigail May Khan, Donald B. Bloch, Brandi N. Davis-Dusenbery, Anahita Ghorbani, Ester Spagnolli, Andrew Martinez, Allicia Ryan, Laurel T. Tainsh, Samuel Kim, Jian Rong, Tianxiao Huan, Jane E. Freedman, Daniel Levy, Karen K. Miller, Akiko Hata, Federica del Monte, Sara Vandenwijngaert, Melissa Swinnen, Stefan Janssens, Tara M. Holmes, Emmanuel S. Buys, Kenneth D. Bloch, Christopher Newton-Cheh, Thomas J. Wang

×

Figure 1

The effect of genotype and dietary sodium on plasma Nt-proANP levels during saline challenge is shown after 1 week of a (A) low-salt diet or (B) high-salt diet (P = 0.018 for genotype effect, P < 0.001 for diet and saline effects).

Options: View larger image (or click on image) Download as PowerPoint
The effect of genotype and dietary sodium on plasma Nt-proANP levels dur...
Samples for measurement of plasma Nt-proANP levels were obtained at baseline and hourly for 8 hours after the start of saline infusion. AA, rs5068 major homozygote; AG, rs5068 heterozygote.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts