Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Looking in the miR-ror: TGF-β–mediated activation of NF-κB in glioma
Christine E. Eyler, Jeremy N. Rich
Christine E. Eyler, Jeremy N. Rich
Published September 24, 2012
Citation Information: J Clin Invest. 2012;122(10):3473-3475. https://doi.org/10.1172/JCI66058.
View: Text | PDF
Commentary

Looking in the miR-ror: TGF-β–mediated activation of NF-κB in glioma

  • Text
  • PDF
Abstract

The explosive growth in our understanding of the molecular underpinnings of glioblastomas has served as an instructive paradigm for other cancers. However, the exact nature by which many of the pathogenic drivers connect is less well known, and elucidation of relationships between critical genetic and signaling alterations may inform the development of therapeutic approaches to the disease. In this issue, Song et al. identify miR-182 induction as a mechanism by which TGF-β stimulation aberrantly activates NF-κB signaling in glioblastoma cells, clarifying a critical point of cross-talk between molecular signaling pathways. Their findings provide a greater understanding of the complex interplay between signaling pathways in cancer that may ultimately prove useful in the development of synergistic targeting approaches.

Authors

Christine E. Eyler, Jeremy N. Rich

×

Figure 1

Effects of TGF-β signaling in glioblastoma.

Options: View larger image (or click on image) Download as PowerPoint
Effects of TGF-β signaling in glioblastoma.
TGF-β signaling is dysregula...
TGF-β signaling is dysregulated on several levels in cancers, including glioblastoma, and mediates many systemic (immunosuppressive and angiogenic) and cellular effects. In contrast to other cancers, the canonical TGF-β pathway (ligand receptor/Smad mediators) is not commonly mutated in glioblastomas. However, modifiers of TGF-β signaling (e.g., FOXO, FOXG1, BF1, and USP15) and interaction with other pathways lead to a shift from primarily tumor-suppressive effects (e.g., antiproliferation) to oncogenesis. Targeting the interactions between TGF-β and NF-κB signaling may offer therapeutic options. Amplification of EGFR, an NF-κB activator, and mutation of NFKBIA (a NF-κB inhibitor) are mutually exclusive and may inform the effects of two miRs that regulate NF-κB activity, miR-182 and miR-30e*. The role of TGF-β and its relationship to other signaling pathways in gliomas contradicts the growth-suppressive effects and alternative signaling effects of TGF-β in noncancerous cells, such as astrocytes.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts