Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Turning a blind eye to anti-VEGF toxicities
Susan E. Quaggin
Susan E. Quaggin
Published October 24, 2012
Citation Information: J Clin Invest. 2012;122(11):3849-3851. https://doi.org/10.1172/JCI65509.
View: Text | PDF
Commentary

Turning a blind eye to anti-VEGF toxicities

  • Text
  • PDF
Abstract

Excessive blood vessel growth is a key feature of many retinal diseases, and recently, anti-VEGF therapy has been successfully applied to treat neovascular age-related macular degeneration (AMD), diabetic macular edema, and retinal vein occlusion. In this issue of the JCI, Kurihara et al. reveal an essential role of Vegfa in maintaining choroid vasculature and cone photoreceptors, critical for central and color vision. Their findings suggest that therapeutic approaches to blocking VEGF signaling in retinal diseases might have unexpected detrimental side effects and that the development of alternative strategies might be necessary.

Authors

Susan E. Quaggin

×

Figure 1

Vegfa produced by RPE cells is required for maintenance of the subretinal vasculature and cone photoreceptors in mice.

Options: View larger image (or click on image) Download as PowerPoint
Vegfa produced by RPE cells is required for maintenance of the subretina...
(A) In the adult eye, retinal pigment epithelial cells produce Vegfa, which is required for maintenance of the fenestrated choriocapillaris. (B) Following RPE-specific deletion of the Vegfa gene from adult mice, the choriocapillaris rapidly disappears and is associated with death of cone photoreceptors required for central and color vision. In contrast, the rod photoreceptors are not damaged.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts