Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
HIV and T follicular helper cells: a dangerous relationship
Carola G. Vinuesa
Carola G. Vinuesa
Published August 27, 2012
Citation Information: J Clin Invest. 2012;122(9):3059-3062. https://doi.org/10.1172/JCI65175.
View: Text | PDF
Commentary

HIV and T follicular helper cells: a dangerous relationship

  • Text
  • PDF
Abstract

HIV infection leads to progressive destruction of infected CD4 T cells, hypergammaglobulinemia, and loss of memory B cells. Germinal centers, which are key to memory B cell formation and protective antibody responses, are major HIV reservoirs in which the virus replicates within T follicular helper (TFH) cells. In this issue of the JCI, the Koup and Streeck groups report that chronic SIV/HIV infection promotes TFH cell accumulation, which may drive B cell dysregulation. Their discoveries suggest that HIV harnesses TFH cells to evade the antibody response.

Authors

Carola G. Vinuesa

×

Figure 1

Potential mechanisms by which TFH cells drive B cell dysregulation and constitute privileged virus reservoirs in HIV infection.

Options: View larger image (or click on image) Download as PowerPoint
Potential mechanisms by which TFH cells drive B cell dysregulation and c...
(i) Excessive IL-6 produced by FDCs that harbor HIV viruses leads to upregulation of BCL-6 and increased differentiation and/or maintenance of TFH cells. Increased TFH cell numbers, together with abundant antigen, lowers competition for B cell selection reducing affinity maturation. (ii) Chronic virus infection changes the TFH cell expression of key molecules, including BCL6, IL6RA, IL4, LIGHT, and TGIF1, leading to altered function that may contribute to decreased memory B cell formation. (iii) In HIV-infected individuals, a larger fraction of TFH cells secrete IL-21 and possibly other cytokines known to promote B cell differentiation and antibody production; this can contribute to the hypergammaglobulinemia. (iv) The high IL-6 levels found in HIV infection may directly promote plasmacytosis and even enhance differentiation of memory B cells into plasma cells, leading to hypergammaglobulinemia and loss of memory B cells. (v) HIV replicates in TFH cells, and this may be enhanced by FDC-derived cytokines, including TNF. Exposure to high levels of IL-6 might also explain the increased proliferative rate of TFH cells in infected individuals, which may help maintain the viral reservoirs. (vi) It has been suggested that infection of TFH cells may be a strategy for viral persistence, since germinal centers are relatively devoid of cytolytic CD8+ T cells. GC, germinal center.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts