Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Dynamic visualization of RANKL and Th17-mediated osteoclast function
Junichi Kikuta, Yoh Wada, Toshiyuki Kowada, Ze Wang, Ge-Hong Sun-Wada, Issei Nishiyama, Shin Mizukami, Nobuhiko Maiya, Hisataka Yasuda, Atsushi Kumanogoh, Kazuya Kikuchi, Ronald N. Germain, Masaru Ishii
Junichi Kikuta, Yoh Wada, Toshiyuki Kowada, Ze Wang, Ge-Hong Sun-Wada, Issei Nishiyama, Shin Mizukami, Nobuhiko Maiya, Hisataka Yasuda, Atsushi Kumanogoh, Kazuya Kikuchi, Ronald N. Germain, Masaru Ishii
View: Text | PDF
Technical Advance Bone biology

Dynamic visualization of RANKL and Th17-mediated osteoclast function

  • Text
  • PDF
Abstract

Osteoclasts are bone resorbing, multinucleate cells that differentiate from mononuclear macrophage/monocyte-lineage hematopoietic precursor cells. Although previous studies have revealed important molecular signals, how the bone resorptive functions of such cells are controlled in vivo remains less well characterized. Here, we visualized fluorescently labeled mature osteoclasts in intact mouse bone tissues using intravital multiphoton microscopy. Within this mature population, we observed cells with distinct motility behaviors and function, with the relative proportion of static – bone resorptive (R) to moving – nonresorptive (N) varying in accordance with the pathophysiological conditions of the bone. We also found that rapid application of the osteoclast-activation factor RANKL converted many N osteoclasts to R, suggesting a novel point of action in RANKL-mediated control of mature osteoclast function. Furthermore, we showed that Th17 cells, a subset of RANKL-expressing CD4+ T cells, could induce rapid N-to-R conversion of mature osteoclasts via cell-cell contact. These findings provide new insights into the activities of mature osteoclasts in situ and identify actions of RANKL-expressing Th17 cells in inflammatory bone destruction.

Authors

Junichi Kikuta, Yoh Wada, Toshiyuki Kowada, Ze Wang, Ge-Hong Sun-Wada, Issei Nishiyama, Shin Mizukami, Nobuhiko Maiya, Hisataka Yasuda, Atsushi Kumanogoh, Kazuya Kikuchi, Ronald N. Germain, Masaru Ishii

×

Figure 4

RANKL-mediated rapid control of mature osteoclast function.

Options: View larger image (or click on image) Download as PowerPoint
RANKL-mediated rapid control of mature osteoclast function.
(A) Intravit...
(A) Intravital multiphoton imaging of osteoclasts in mouse bone tissues of a3-GFP mice under control conditions (Supplemental Video 6). Mature osteoclasts expressing GFP-fused V-type H+ ATPase a3 subunit are in green. Blue, bone surface. Cell borders are marked in white lines. Scale bar: 40 μm. (B) Representative computer-processed images of mature osteoclasts and their RANKL-mediated rapid shape changes. Images 1–4 were computer extracted from images under the initial condition from A (left panels) and again 10 minutes after i.v. injection of 1 mg/kg of GST-RANKL (right panels) (as in Figure 1, E and F). Scale bars: 5 μm. (C) Representative time courses of the CDI for the 4 individual cells shown in B. Moving (high CDI) osteoclasts underwent transition to the static (low CDI) state less than 10 minutes after i.v. administration of RANKL. (D) The summary of CDIs under control conditions (control) and 40 minutes after i.v. injection of 0.1 mg/kg of GST-RANKL (RANKL 0.1), 1 mg/kg of GST-RANKL (RANKL 1), or GST alone (n = 13 for control, n = 5 for 0.1 mg/kg of GST-RANKL, n = 13 for 1 mg/kg of GST-RANKL, and n = 21 for GST alone, compiled from 3 independent experiments).

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts