Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Human satellite cells have regenerative capacity and are genetically manipulable
Andreas Marg, … , Zsuzsanna Izsvák, Simone Spuler
Andreas Marg, … , Zsuzsanna Izsvák, Simone Spuler
Published August 26, 2014
Citation Information: J Clin Invest. 2014;124(10):4257-4265. https://doi.org/10.1172/JCI63992.
View: Text | PDF
Technical Advance Genetics Muscle biology Stem cells Therapeutics

Human satellite cells have regenerative capacity and are genetically manipulable

  • Text
  • PDF
Abstract

Muscle satellite cells promote regeneration and could potentially improve gene delivery for treating muscular dystrophies. Human satellite cells are scarce; therefore, clinical investigation has been limited. We obtained muscle fiber fragments from skeletal muscle biopsy specimens from adult donors aged 20 to 80 years. Fiber fragments were manually dissected, cultured, and evaluated for expression of myogenesis regulator PAX7. PAX7+ satellite cells were activated and proliferated efficiently in culture. Independent of donor age, as few as 2 to 4 PAX7+ satellite cells gave rise to several thousand myoblasts. Transplantation of human muscle fiber fragments into irradiated muscle of immunodeficient mice resulted in robust engraftment, muscle regeneration, and proper homing of human PAX7+ satellite cells to the stem cell niche. Further, we determined that subjecting the human muscle fiber fragments to hypothermic treatment successfully enriches the cultures for PAX7+ cells and improves the efficacy of the transplantation and muscle regeneration. Finally, we successfully altered gene expression in cultured human PAX7+ satellite cells with Sleeping Beauty transposon–mediated nonviral gene transfer, highlighting the potential of this system for use in gene therapy. Together, these results demonstrate the ability to culture and manipulate a rare population of human tissue-specific stem cells and suggest that these PAX7+ satellite cells have potential to restore gene function in muscular dystrophies.

Authors

Andreas Marg, Helena Escobar, Sina Gloy, Markus Kufeld, Joseph Zacher, Andreas Spuler, Carmen Birchmeier, Zsuzsanna Izsvák, Simone Spuler

×

Figure 2

Activated satellite cells proliferate within the HMFFs.

Options: View larger image (or click on image) Download as PowerPoint

            Activated satellite cells proliferate within the HMFFs.
   ...
(A) Marked proliferation of PAX7+ cells is observed in HMFFs, independent of the age of the donors. During the first 10 days of HMFF culture, approximately 80% of cells within the fiber fragment were PAX7+ (green: PAX7, red: desmin, blue: Hoechst dye). At day 21, the quantity of PAX7+ cells within the HMFFs is reduced to 10% of HMFF myoblasts. (B) Myoblasts within HMFF cultures are MYF5+ after 14 days (green: desmin, red: MYF5, blue: Hoechst). (C) The basal lamina (β2-laminin, green) ensheathes desmin+ cells (red) in the HMFFs (14 days of culture). Scale bar: 50 μm. Illustrations in A and C depict HMFFs. MSC, muscle satellite cells.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts