Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Novel pharmacologic therapies for cystic fibrosis
Pamela L. Zeitlin
Pamela L. Zeitlin
Published February 15, 1999
Citation Information: J Clin Invest. 1999;103(4):447-452. https://doi.org/10.1172/JCI6346.
View: Text | PDF
Perspective

Novel pharmacologic therapies for cystic fibrosis

  • Text
  • PDF
Abstract

Authors

Pamela L. Zeitlin

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
The five general classifications of CFTR mutations are shown within the ...
The five general classifications of CFTR mutations are shown within the context of a single epithelial cell. The corresponding protein electrophoresis pattern for each class is depicted in the box to the right of each mutation class. A, B, and C refer to the typical mobilities of nascent CFTR (A, 130 kDa), core glycosylated CFTR (B, 150 kDa), and fully glycosylated CFTR (C, 180 kDa). Null refers to the absence of CFTR protein. CFTR, cystic fibrosis transmembrane conductance regulator.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts