Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Treating myeloma cast nephropathy without treating myeloma
Nelson Leung
Nelson Leung
Published April 9, 2012
Citation Information: J Clin Invest. 2012;122(5):1605-1608. https://doi.org/10.1172/JCI63248.
View: Text | PDF
Commentary

Treating myeloma cast nephropathy without treating myeloma

  • Text
  • PDF
Abstract

Cast nephropathy is the result of coprecipitation of immunoglobulin free light chains (FLCs) with Tamm-Horsfall glycoprotein (THP). It is a hallmark of multiple myeloma that has significant consequences. Treatment strategies in the past focused on reduction of serum FLC by control of the myeloma. In this issue, Ying et al. report on their successful synthesis of a cyclized competitor peptide that blocks the binding of FLC to THP. In animal studies, this cyclized peptide was capable of reducing cast formation and kidney injury, representing a novel treatment strategy for cast nephropathy that does not depend on the responsiveness of the myeloma to chemotherapy.

Authors

Nelson Leung

×

Figure 2

Treatment of cast nephropathy by targeting THP and FLC interaction.

Options: View larger image (or click on image) Download as PowerPoint
Treatment of cast nephropathy by targeting THP and FLC interaction.
(A) ...
(A) Excessive monoclonal FLC is filtered and binds with THP in the ascending limb of the loop of Henle, resulting in obstruction and cast nephropathy. (B) In the presence of cyclized competitor peptide (CCP), the binding site of THP is blocked, thus preventing FLC from binding and coprecipitation with it. FLC and THP both pass freely through the nephron.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts