Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics
Claudia Bagni, … , Giovanni Neri, Randi Hagerman
Claudia Bagni, … , Giovanni Neri, Randi Hagerman
Published December 3, 2012
Citation Information: J Clin Invest. 2012;122(12):4314-4322. https://doi.org/10.1172/JCI63141.
View: Text | PDF
Science in Medicine

Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics

  • Text
  • PDF
Abstract

Fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and is also linked to other neurologic and psychiatric disorders. FXS is caused by a triplet expansion that inhibits expression of the FMR1 gene; the gene product, FMRP, regulates mRNA metabolism in the brain and thus controls the expression of key molecules involved in receptor signaling and spine morphology. While there is no definitive cure for FXS, the understanding of FMRP function has paved the way for rational treatment designs that could potentially reverse many of the neurobiological changes observed in FXS. Additionally, behavioral, pharmacological, and cognitive interventions can raise the quality of life for both patients and their families.

Authors

Claudia Bagni, Flora Tassone, Giovanni Neri, Randi Hagerman

×

Figure 2

Effects of receptor signaling pathways on FMRP-mediated regulation at synapses.

Options: View larger image (or click on image) Download as PowerPoint
Effects of receptor signaling pathways on FMRP-mediated regulation at sy...
A complex cascade of molecules downstream of glutamate (NMDA, AMPA, mGluR5) and BDNF receptors modulates FMRP activity at synapses. FMRP is affected by mTOR and Mnk1 signaling pathways (89) that regulate phosphorylation of general eIF4E-binding proteins and consequently protein synthesis. FMRP can be phosphorylated by S6 kinase (S6K) (72) or dephosphorylated by protein phosphatase 2A (PP2A) (137). The phosphorylation status affects its RNA-binding properties as well as its translational regulation. Mechanistically, FMRP has been shown to interact with the initiation factor eIF4E and regulate translational through the specific eIF4E-binding protein CYFIP1 (52). Further studies are required to verify whether FMRP also binds general eIF4E-BPs and whether these signaling pathways affect the FMRP-CYFIP1 complex as well. FMRP may also affect translational elongation (58). In absence of FMRP, the upstream kinase phosphatidylinositol 3-kinase (PI3K) is upregulated, leading to the increased mTOR phosphorylation and activity observed in patients with FXS as well as in the Fmr1 KO mouse (87, 89), culminating in an increased protein synthesis. Similar and possibly convergent effects are due to an upregulation of ERK (72, 87–89) and TrkB (85) signaling. In absence of FMRP, there is an increase of a subset of locally synthesized proteins (Arc, Map1B, αCAMKII, postsynaptic density-95 [PSD-95], MMP9, GSK-3β, among others). The increased Arc level contributes to an increased AMPA internalization and reduced AMPA in the membrane. At the same time, Arc, Map1B, PSD-95, and other dysregulated proteins involved in cytoskeleton scaffolding and remodeling may contribute to the FXS dysmorphic spine as well.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts