Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Unraveling human natural killer cell deficiency
Jordan S. Orange
Jordan S. Orange
Published February 22, 2012
Citation Information: J Clin Invest. 2012;122(3):798-801. https://doi.org/10.1172/JCI62620.
View: Text | PDF
Commentary

Unraveling human natural killer cell deficiency

  • Text
  • PDF
Abstract

NK cells are a component of the innate immune system identified in animals as serving an essential role in antiviral immunity. Establishing their role in human health has been challenging, with the most direct insight coming from the study of NK cell–deficient individuals. However, NK cell deficiencies are rare, and more research is needed. In this issue of the JCI, two independent groups of researchers have simultaneously identified the genetic cause of a human NK cell deficiency as mutation in the MCM4 gene, encoding minichromosome maintenance complex component 4. These reports suggest a critical role for the minichromosome maintenance helicase complex in NK cells and NK cell–mediated host defense.

Authors

Jordan S. Orange

×

Figure 2

Schematic of terminal human NK cell differentiation and a proposed role for MCM4.

Options: View larger image (or click on image) Download as PowerPoint
Schematic of terminal human NK cell differentiation and a proposed role ...
Human NK cells arise from the HSC in the bone marrow and then progress to pro-, pre-, and immature NK cells (also referred to as stage 1, 2, and 3 NK cells, respectively). The immature NK cell transits to the peripheral lymphoid compartment secondary lymphoid tissues where CD56bright NK cells predominate. CD56bright NK cells are also referred to as stage 4 NK cells, and current evidence suggests that they develop in the secondary lymphoid tissues into CD56dim mature NK cells (stage 5). Key differences between CD56bright and CD56dim NK cells are depicted in the schematics of these two cells. Characteristics of early-stage NK cells as well as their specific transcriptional requirements are reviewed elsewhere (18). The present work suggests a role for MCM4 in the transition of CD56bright to CD56dim NK cells, as evidenced by the relative absence of CD56dim NK cells in the peripheral blood with the preservation of the CD56bright NK cell population.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts