Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
MicroRNAs, fibrotic remodeling, and aortic aneurysms
Dianna M. Milewicz
Dianna M. Milewicz
Published January 24, 2012
Citation Information: J Clin Invest. 2012;122(2):490-493. https://doi.org/10.1172/JCI62204.
View: Text | PDF
Commentary

MicroRNAs, fibrotic remodeling, and aortic aneurysms

  • Text
  • PDF
Abstract

Aortic aneurysms are a common clinical condition that can cause death due to aortic dissection or rupture. The association between aortic aneurysm pathogenesis and altered TGF-β signaling has been the subject of numerous investigations. Recently, a TGF-β–responsive microRNA (miR), miR-29, has been identified to play a role in cellular phenotypic modulation during aortic development and aging. In this issue of JCI, Maegdefessel and colleagues demonstrate that decreasing the levels of miR-29b in the aortic wall can attenuate aortic aneurysm progression in two different mouse models of abdominal aortic aneurysms. This study highlights the relevance of miR-29b in aortic disease but also raises questions about its specific role.

Authors

Dianna M. Milewicz

×

Figure 1

Decreased expression of miR-29b and aortic aneurysm progression.

Options: View larger image (or click on image) Download as PowerPoint
Decreased expression of miR-29b and aortic aneurysm progression.
AAAs we...
AAAs were induced in 10-week-old mice by infusing porcine pancreatic elastase into the infrarenal segment of the aorta. miR-29b expression was significantly downregulated with aneurysm progression over 21 days, and expression of collagen genes (Col1a1 and Col3a1) increased. Administration of locked nucleic acid anti–miR-29b further decreased miR-29b levels and greatly increased expression of collagen genes, resulting in a reduction in aortic enlargement over time. Increasing the expression of miR-29b using a lentiviral vector (pre–miR-29b) increased expression of miR-29b and decreased collagen gene expression, leading to augmented aortic growth.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts