Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Transient telomere dysfunction induces chromosomal instability and promotes carcinogenesis
Yvonne Begus-Nahrmann, … , André Lechel, K. Lenhard Rudolph
Yvonne Begus-Nahrmann, … , André Lechel, K. Lenhard Rudolph
Published May 24, 2012
Citation Information: J Clin Invest. ;122(6):2283-2288. https://doi.org/10.1172/JCI61745.
View: Text | PDF | Corrigendum
Brief Report

Transient telomere dysfunction induces chromosomal instability and promotes carcinogenesis

  • Text
  • PDF
Abstract

Telomere shortening limits the proliferative capacity of a cell, but perhaps surprisingly, shortening is also known to be associated with increased rates of tumor initiation. A current hypothesis suggests that telomere dysfunction increases tumor initiation by induction of chromosomal instability, but that initiated tumors need to reactivate telomerase for genome stabilization and tumor progression. This concept has not been tested in vivo, since appropriate mouse models were lacking. Here, we analyzed hepatocarcinogenesis in a mouse model of inducible telomere dysfunction on a telomerase-proficient background, in telomerase knockout mice with chronic telomere dysfunction (G3 mTerc–/–), and in WT mice with functional telomeres and telomerase. Transient or chronic telomere dysfunction enhanced the rates of chromosomal aberrations during hepatocarcinogenesis, but only telomerase-proficient mice exhibited significantly increased rates of macroscopic tumor formation in response to telomere dysfunction. In contrast, telomere dysfunction resulted in pronounced accumulation of DNA damage, cell-cycle arrest, and apoptosis in telomerase-deficient liver tumors. Together, these data provide in vivo evidence that transient telomere dysfunction during early or late stages of tumorigenesis promotes chromosomal instability and carcinogenesis in telomerase-proficient mice.

Authors

Yvonne Begus-Nahrmann, Daniel Hartmann, Johann Kraus, Parisa Eshraghi, Annika Scheffold, Melanie Grieb, Volker Rasche, Peter Schirmacher, Han-Wong Lee, Hans A. Kestler, André Lechel, K. Lenhard Rudolph

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 712 62
PDF 142 18
Figure 175 3
Table 44 0
Supplemental data 54 0
Citation downloads 117 0
Totals 1,244 83
Total Views 1,327
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts