Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets
Alicia K. Olivier, Yaling Yi, Xingshen Sun, Hongshu Sui, Bo Liang, Shanming Hu, Weiliang Xie, John T. Fisher, Nicholas W. Keiser, Diana Lei, Weihong Zhou, Ziying Yan, Guiying Li, Turan I.A. Evans, David K. Meyerholz, Kai Wang, Zoe A. Stewart, Andrew W. Norris, John F. Engelhardt
Alicia K. Olivier, Yaling Yi, Xingshen Sun, Hongshu Sui, Bo Liang, Shanming Hu, Weiliang Xie, John T. Fisher, Nicholas W. Keiser, Diana Lei, Weihong Zhou, Ziying Yan, Guiying Li, Turan I.A. Evans, David K. Meyerholz, Kai Wang, Zoe A. Stewart, Andrew W. Norris, John F. Engelhardt
View: Text | PDF
Technical Advance Metabolism

Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets

  • Text
  • PDF
Abstract

Diabetes is a common comorbidity in cystic fibrosis (CF) that worsens prognosis. The lack of an animal model for CF-related diabetes (CFRD) has made it difficult to dissect how the onset of pancreatic pathology influences the emergence of CFRD. We evaluated the structure and function of the neonatal CF endocrine pancreas using a new CFTR-knockout ferret model. Although CF kits are born with only mild exocrine pancreas disease, progressive exocrine and endocrine pancreatic loss during the first months of life was associated with pancreatic inflammation, spontaneous hyperglycemia, and glucose intolerance. Interestingly, prior to major exocrine pancreas disease, CF kits demonstrated significant abnormalities in blood glucose and insulin regulation, including diminished first-phase and accentuated peak insulin secretion in response to glucose, elevated peak glucose levels following glucose challenge, and variably elevated insulin and C-peptide levels in the nonfasted state. Although there was no difference in lobular insulin and glucagon expression between genotypes at birth, significant alterations in the frequencies of small and large islets were observed. Newborn cultured CF islets demonstrated dysregulated glucose-dependent insulin secretion in comparison to controls, suggesting intrinsic abnormalities in CF islets. These findings demonstrate that early abnormalities exist in the regulation of insulin secretion by the CF endocrine pancreas.

Authors

Alicia K. Olivier, Yaling Yi, Xingshen Sun, Hongshu Sui, Bo Liang, Shanming Hu, Weiliang Xie, John T. Fisher, Nicholas W. Keiser, Diana Lei, Weihong Zhou, Ziying Yan, Guiying Li, Turan I.A. Evans, David K. Meyerholz, Kai Wang, Zoe A. Stewart, Andrew W. Norris, John F. Engelhardt

×

Figure 1

Progressive exocrine histopathology in the neonatal CF ferret pancreas.

Options: View larger image (or click on image) Download as PowerPoint
Progressive exocrine histopathology in the neonatal CF ferret pancreas.
...
(A) Representative pancreatic histology from neonatal non-CF and CF ferrets. Multifocally the lumens of acini and lesser ducts of CF ferrets were dilated by pale eosinophilic material (*). Older CF animals exhibited loss of exocrine acini and replacement by fibrosis (arrows). Scale bars: 50 μm. (B) High magnification of acinar luminal dilation in a newborn CF pancreas exhibiting intraluminal material (*), loss of epithelial cytoplasmic zymogen granules (arrows), and apoptotic bodies (circled areas and higher-magnification inset) (scale bar: 50 μm; inset magnification: ×600). (C) Acinar/duct dilation scores for specific age groups. Values are mean ± SEM for n independent animals. *P < 0.001, age-matched CF versus non-CF controls for the various groupings; †P < 0.001, 9–32 day versus newborn or 2–5 day CF group; Kruskal-Wallis nonparametric 1-way ANOVA with a Dunn’s post-test.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts