Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
The long and the short of aberrant ciliogenesis in Huntington disease
Jeh-Ping Liu, Scott O. Zeitlin
Jeh-Ping Liu, Scott O. Zeitlin
Published October 10, 2011
Citation Information: J Clin Invest. 2011;121(11):4237-4241. https://doi.org/10.1172/JCI60243.
View: Text | PDF
Commentary

The long and the short of aberrant ciliogenesis in Huntington disease

  • Text
  • PDF
Abstract

Huntington disease (HD) is a dominantly inherited neurodegenerative disorder that is caused by a mutant huntingtin (HTT) gene encoding a version of the Htt protein with an expanded polyglutamine stretch. Although the HTT gene was discovered more than 18 years ago, the functions of normal Htt and the mechanisms by which mutant Htt causes disease are not well defined. In this issue of the JCI, Keryer et al. uncovered a novel function for normal Htt in ciliogenesis and report that mutant Htt causes hypermorphic ciliogenesis and ciliary dysfunction. These observations suggest that it is now critical to understand the extent to which ciliary dysfunction contributes to the different symptoms of HD and to determine whether therapeutic strategies designed to normalize ciliary function can ameliorate the disease.

Authors

Jeh-Ping Liu, Scott O. Zeitlin

×

Figure 1

Structure of primary and motile secondary cilia.

Options: View larger image (or click on image) Download as PowerPoint
Structure of primary and motile secondary cilia.
Primary and motile seco...
Primary and motile secondary cilia differ in the structure of their axoneme. Primary cilia have an axoneme composed of nine pairs of microtubules (9 + 0 axoneme), whereas the axoneme of motile secondary cilia also includes a central pair of microtubules (9 + 2 axoneme). Each of the nine outer pairs of microtubules in the axoneme of motile secondary cilia have inner and outer dynein arms that connect with an adjacent pair of outer microtubules and radial spokes connecting them with the central pair of microtubules. At the base of primary cilia is a basal body composed of a centrosome (centriole plus surrounding PCM). Motile secondary cilia also have basal bodies consisting of centrioles and PCM.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts