Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover
Roger H. Unger, Alan D. Cherrington
Roger H. Unger, Alan D. Cherrington
Published January 3, 2012
Citation Information: J Clin Invest. 2012;122(1):4-12. https://doi.org/10.1172/JCI60016.
View: Text | PDF
Science in Medicine

Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover

  • Text
  • PDF
Abstract

The hormone glucagon has long been dismissed as a minor contributor to metabolic disease. Here we propose that glucagon excess, rather than insulin deficiency, is the sine qua non of diabetes. We base this on the following evidence: (a) glucagon increases hepatic glucose and ketone production, catabolic features present in insulin deficiency; (b) hyperglucagonemia is present in every form of poorly controlled diabetes; (c) the glucagon suppressors leptin and somatostatin suppress all catabolic manifestations of diabetes during total insulin deficiency; (d) total β cell destruction in glucagon receptor–null mice does not cause diabetes; and (e) perfusion of normal pancreas with anti-insulin serum causes marked hyperglucagonemia. From this and other evidence, we conclude that glucose-responsive β cells normally regulate juxtaposed α cells and that without intraislet insulin, unregulated α cells hypersecrete glucagon, which directly causes the symptoms of diabetes. This indicates that glucagon suppression or inactivation may provide therapeutic advantages over insulin monotherapy.

Authors

Roger H. Unger, Alan D. Cherrington

×

Figure 2

Relationship between insulin and glucagon secretion.

Options: View larger image (or click on image) Download as PowerPoint
Relationship between insulin and glucagon secretion.
(A) Responses of in...
(A) Responses of insulin and glucagon to minor changes in glucose perfused into isolated pancreata of normal dogs. The perfusate glucose concentration varied from 60 to 90 mg/dl. Modest changes in the perfusing glucose concentration led to major reciprocal responses of both insulin and glucagon. Figure adapted with permission from Diabetologia (38). (B) Demonstration that a rise in glucose “paradoxically” stimulates glucagon secretion when it is not accompanied by the rise in insulin that normally accompanies elevations in glucose concentration. Figure adapted from Journal of Clinical Investigation (43). (C) Topographic scheme of a normal human islet showing the extensive juxtaposition of β cells (red) to α cells (green) that facilitates instantaneous insulin control of glucagon secretion via the interstitial space separating the two cells. Scale bar: 50 μm. Figure reproduced with permission from Diabetes (48). (D) Direct physiologic evidence of the paracrine role of insulin on α cell function in rodents. The isolated pancreata of normal rats are perfused with either nonimmune serum, as control, or a potent anti-insulin serum. The sudden rise in glucagon upon infusion of the anti-insulin serum indicates an ongoing paracrine inhibition of glucagon secretion by the insulin in the islets. Figure adapted from Journal of Clinical Investigation (53).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts