Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Unraveling the functional implications of GWAS: how T cell protein tyrosine phosphatase drives autoimmune disease
Julie Zikherman, Arthur Weiss
Julie Zikherman, Arthur Weiss
View: Text | PDF
Commentary

Unraveling the functional implications of GWAS: how T cell protein tyrosine phosphatase drives autoimmune disease

  • Text
  • PDF
Abstract

Genome-wide association studies (GWAS) have identified a large number of SNPs that are linked to human autoimmune diseases. However, the functional consequences of most of these genetic variations remain undefined. T cell protein tyrosine phosphatase (TCPTP, which is encoded by PTPN2) is a JAK/STAT and growth factor receptor phosphatase that has been linked to the pathogenesis of type 1 diabetes, rheumatoid arthritis, and Crohn’s disease by GWAS. In this issue of the JCI, Wiede and colleagues have generated a T cell–specific deletion of TCPTP and identified a novel role for this phosphatase as a negative regulator of TCR signaling. These data provide new insight as to how noncoding PTPN2 SNPs identified in GWAS could drive human autoimmune diseases.

Authors

Julie Zikherman, Arthur Weiss

×

Usage data is cumulative from January 2025 through January 2026.

Usage JCI PMC
Text version 536 50
PDF 92 9
Figure 95 1
Citation downloads 99 0
Totals 822 60
Total Views 882
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts