Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion
Philippe Ravassard, … , Paul Czernichow, Raphael Scharfmann
Philippe Ravassard, … , Paul Czernichow, Raphael Scharfmann
Published August 25, 2011
Citation Information: J Clin Invest. 2011;121(9):3589-3597. https://doi.org/10.1172/JCI58447.
View: Text | PDF
Technical Advance

A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion

  • Text
  • PDF
Abstract

Despite intense efforts over the past 30 years, human pancreatic β cell lines have not been available. Here, we describe a robust technology for producing a functional human β cell line using targeted oncogenesis in human fetal tissue. Human fetal pancreatic buds were transduced with a lentiviral vector that expressed SV40LT under the control of the insulin promoter. The transduced buds were then grafted into SCID mice so that they could develop into mature pancreatic tissue. Upon differentiation, the newly formed SV40LT-expressing β cells proliferated and formed insulinomas. The resulting β cells were then transduced with human telomerase reverse transcriptase (hTERT), grafted into other SCID mice, and finally expanded in vitro to generate cell lines. One of these cell lines, EndoC-βH1, expressed many β cell–specific markers without any substantial expression of markers of other pancreatic cell types. The cells secreted insulin when stimulated by glucose or other insulin secretagogues, and cell transplantation reversed chemically induced diabetes in mice. These cells represent a unique tool for large-scale drug discovery and provide a preclinical model for cell replacement therapy in diabetes. This technology could be generalized to generate other human cell lines when the cell type–specific promoter is available.

Authors

Philippe Ravassard, Yasmine Hazhouz, Séverine Pechberty, Emilie Bricout-Neveu, Mathieu Armanet, Paul Czernichow, Raphael Scharfmann

×

Figure 7

Normoglycemia is restored after an EndoC-βH1 cell transplant into diabetic SCID mice.

Options: View larger image (or click on image) Download as PowerPoint
Normoglycemia is restored after an EndoC-βH1 cell transplant into diabet...
(A) DM was chemically induced in 12 SCID mice by an intraperitoneal injection of STZ. 2 days later, 2 × 106 EndoC-βH1 cells were transplanted under the kidney capsule in 6 of the 12 DM mice. The transplanted cells were removed by unilateral nephrectomy 55 days later. Each point is the mean ± SEM of blood glucose levels that were measured at different time points in the transplanted (circles) or nontransplanted (squares) SCID mice. (B) An intraperitoneal glucose tolerance test was performed on the STZ-induced DM SCID mice with the EndoC-βH1 cell graft, 35 days after the cell transplant. Proper regulation of blood glucose levels was observed in the cell-transplanted DM SCID mice (circles) when compared with those of the control non-DM SCID mice (squares). Each point in the graph is the mean ± SEM from 4 mice in each group. (C) Insulin (red) and Ki67 (green) costaining in the cell transplant after its removal by unilateral nephrectomy. (D) The pancreas of the DM mice (+STZ) with the EndoC-βH1 cell graft is almost devoid of insulin-positive cells (brown), whereas non-DM mice (–STZ) present a large number of insulin-positive islets. Scale bars: 25 μm (C); 500 μm (100 μm in the inset) (D).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts