Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Adenosine: front and center in linking nutrition and metabolism to neuronal activity
Robert W. Greene
Robert W. Greene
View: Text | PDF
Commentary

Adenosine: front and center in linking nutrition and metabolism to neuronal activity

  • Text
  • PDF
Abstract

Many individuals with epilepsy benefit from consuming a ketogenic diet, which is similar to the more commonly known Atkins diet. The underlying molecular reason for this has not been determined. However, in this issue of the JCI, Masino et al. have elucidated the mechanism responsible for the antiepileptic effects of the ketogenic diet in mice. The diet is shown to decrease expression of the enzyme adenosine kinase (Adk), which is responsible for clearing the endogenous antiepileptic agent adenosine (Ado) from the extracellular CNS space. Decreased expression of Adk results in increased extracellular Ado, activation of inhibitory Ado A1 receptors, and decreased seizure generation, the desired therapeutic effect. The authors’ work serves to emphasize the importance of controlling Adk expression, not only as the mechanism of action of the ketogenic diet, but also as a potential target of future therapies.

Authors

Robert W. Greene

×

Figure 1

CNS pathways for Ado metabolism.

Options: View larger image (or click on image) Download as PowerPoint
CNS pathways for Ado metabolism.
Under physiological conditions, Ado is ...
Under physiological conditions, Ado is coreleased from neuronal and glial neurotransmitter (NT) vesicles as ATP. The ATP is broken down to Ado by 5′ ectonucleotidases. Ado flows down its concentration gradient into glia, facilitated by equilibrative transporters (primarily nitrobenzylthiolionosine-sensitive transporter), where it is metabolized together with ATP to AMP and ADP by high-affinity, low-capacity Adk. A change in glial intracellular Ado may occur with a reduction in levels of glial Adk, as a result of maintaining a ketogenic diet. The glial intracellular increase in Ado is reflected extracellularly, where Ado can activate pre- and postsynaptic AdoA1R to increase Ado-mediated inhibitory tone and exert an antiepileptic effect.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts