Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Upper urinary tract pacemaker cells join the GLI club
Doris Herzlinger
Doris Herzlinger
Published February 21, 2011
Citation Information: J Clin Invest. 2011;121(3):836-838. https://doi.org/10.1172/JCI46400.
View: Text | PDF
Commentary

Upper urinary tract pacemaker cells join the GLI club

  • Text
  • PDF
Abstract

Mutations in GLI3, a component of the Sonic Hedgehog (Shh) signaling pathway, cause a variety of human developmental syndromes. In this issue of the JCI, Cain and colleagues show that tightly regulated GLI3 repressor activity is essential for Shh-dependent differentiation of upper urinary tract pacemaker cells and the efficient flow of urine from the kidney to the bladder. These results link defective pacemaker cell differentiation with hydronephrosis and provide a cellular basis for one of the abnormal renal defects observed in humans with the GLI3-linked disease Pallister-Hall syndrome.

Authors

Doris Herzlinger

×

Figure 1

The kidney outflow tract includes the renal calyces, pelvis, and ureter and is highly prone to congenital defects.

Options: View larger image (or click on image) Download as PowerPoint
The kidney outflow tract includes the renal calyces, pelvis, and ureter ...
Abnormalities that severely impair the flow of urine through the outflow tract lead to hydronephrosis and often permanent kidney damage. Known causes of hydronephrosis include outflow tract compression by ectopic renal vessels, structural occlusions intrinsic to the outflow tract, and aberrant outflow tract smooth muscle differentiation that results in aperistaltic ureter segments. The report by Cain et al. (13) shows that hydronephrosis can also be caused by inefficient, dysplastic peristalsis caused by an absence of upper urinary tract pacemakers, the specialized cells that trigger smooth muscle contractions.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts