Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer?
Kay F. Macleod
Kay F. Macleod
Published November 22, 2010
Citation Information: J Clin Invest. 2010;120(12):4179-4182. https://doi.org/10.1172/JCI45406.
View: Text | PDF
Commentary

The RB tumor suppressor: a gatekeeper to hormone independence in prostate cancer?

  • Text
  • PDF
Abstract

The retinoblastoma tumor suppressor gene (RB1; encoding RB) is often cited as a gatekeeper, whose inactivation — direct or indirect — is a rate-limiting step for tumor initiation. However, in this issue of the JCI, Sharma et al. show that RB1 loss is a late event in human prostate cancer that is coincident with the emergence of castrate-resistant metastatic disease. This role for RB1 was linked to both E2F transcription factor 1–driven upregulation of the androgen receptor (AR) and increased recruitment of the AR to target gene promoters. This unexpected function for RB1 in late-stage cancer calls upon us to reassess the significance of RB1 inactivation in other cancers in terms of its timing, function in disease etiology, and relevance for cancer therapy.

Authors

Kay F. Macleod

×

Figure 1

Inactivation of the RB pathway in human cancers.

Options: View larger image (or click on image) Download as PowerPoint
Inactivation of the RB pathway in human cancers.
Different components of...
Different components of the RB pathway are deregulated in human cancers, with the overall effect of derepressing E2F transcription factors that promote cell cycle progression or programmed cell death. When cell death pathways are inactivated, as is the case in most cancers, activation of E2Fs drives proliferation through induction of target genes such as cyclin E, CDC6, and CDK1. Loss of the RB1 tumor suppressor is prevalent in osteosarcoma and small-cell lung carcinoma (SCLC) in addition to its defining loss in human retinoblastoma, but it was initially confounding that its loss was not more commonly detected. However, with the discovery that p16/INK4A functions as an upstream inhibitor of CDK4 and CDK6 and thus as an activator of RB, and that loss of the p16/INK4A locus occurred in many of the cancers where RB1 loss was not detected, Weinberg and others proposed that functional inactivation of RB could be achieved in different tumors through targeting different components of the RB pathway (16). Thus, loss of p16/INK4A in melanoma, translocation of cyclin D1 in mantle cell lymphoma, or, indeed, overexpression of BMI-1 in medulloblastoma has been proposed to have similar functional readout to RB loss in terms of E2F activity and cellular proliferation. Ampk-α2, α2 subunit of AMPK; Apaf-1, apoptosis protease activating factor–1; E2A-Pbx1, the translocation product of fusion of the E2A gene to the Pbx1 gene; Emi-1, early mitotic inhibitor 1; FoxO TFs, forkhead box O subclass of transcription factors; Tk, thymidine kinase; pol α, DNA polymerase-α.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts