Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Sequencing a mouse acute promyelocytic leukemia genome reveals genetic events relevant for disease progression
Lukas D. Wartman, … , Richard K. Wilson, Timothy J. Ley
Lukas D. Wartman, … , Richard K. Wilson, Timothy J. Ley
Published March 23, 2011
Citation Information: J Clin Invest. 2011;121(4):1445-1455. https://doi.org/10.1172/JCI45284.
View: Text | PDF
Technical Advance

Sequencing a mouse acute promyelocytic leukemia genome reveals genetic events relevant for disease progression

  • Text
  • PDF
Abstract

Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML). It is characterized by the t(15;17)(q22;q11.2) chromosomal translocation that creates the promyelocytic leukemia–retinoic acid receptor α (PML-RARA) fusion oncogene. Although this fusion oncogene is known to initiate APL in mice, other cooperating mutations, as yet ill defined, are important for disease pathogenesis. To identify these, we used a mouse model of APL, whereby PML-RARA expressed in myeloid cells leads to a myeloproliferative disease that ultimately evolves into APL. Sequencing of a mouse APL genome revealed 3 somatic, nonsynonymous mutations relevant to APL pathogenesis, of which 1 (Jak1 V657F) was found to be recurrent in other affected mice. This mutation was identical to the JAK1 V658F mutation previously found in human APL and acute lymphoblastic leukemia samples. Further analysis showed that JAK1 V658F cooperated in vivo with PML-RARA, causing a rapidly fatal leukemia in mice. We also discovered a somatic 150-kb deletion involving the lysine (K)-specific demethylase 6A (Kdm6a, also known as Utx) gene, in the mouse APL genome. Similar deletions were observed in 3 out of 14 additional mouse APL samples and 1 out of 150 human AML samples. In conclusion, whole genome sequencing of mouse cancer genomes can provide an unbiased and comprehensive approach for discovering functionally relevant mutations that are also present in human leukemias.

Authors

Lukas D. Wartman, David E. Larson, Zhifu Xiang, Li Ding, Ken Chen, Ling Lin, Patrick Cahan, Jeffery M. Klco, John S. Welch, Cheng Li, Jacqueline E. Payton, Geoffrey L. Uy, Nobish Varghese, Rhonda E. Ries, Mieke Hoock, Daniel C. Koboldt, Michael D. McLellan, Heather Schmidt, Robert S. Fulton, Rachel M. Abbott, Lisa Cook, Sean D. McGrath, Xian Fan, Adam F. Dukes, Tammi Vickery, Joelle Kalicki, Tamara L. Lamprecht, Timothy A. Graubert, Michael H. Tomasson, Elaine R. Mardis, Richard K. Wilson, Timothy J. Ley

×
Options: View larger image (or click on image) Download as PowerPoint
Kdm6a deletions in APL tumors

Kdm6a deletions in APL tumors


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts