Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Which species are in your feces?
Colby Zaph
Colby Zaph
Published November 22, 2010
Citation Information: J Clin Invest. 2010;120(12):4182-4185. https://doi.org/10.1172/JCI45263.
View: Text | PDF
Commentary

Which species are in your feces?

  • Text
  • PDF
Abstract

Nosocomial infections (i.e., infections acquired as a result of treatment in a hospital or health care unit) result in approximately 100,000 deaths and cost more than 25 billion dollars per year in the US alone. These infections are caused primarily by bacteria and affect mainly immunosuppressed patients. However, not all patients acquire infections, and the events leading up to infection are unclear. In this issue of the JCI, Ubeda et al. report how acquisition of one such infection, vancomycin-resistant Enterococcus faecium (VRE), is linked to a shift in the microbial flora following antibiotic treatment. This study highlights the potential for high-throughput sequencing of intestinal microbiota as a means to identify high-risk populations.

Authors

Colby Zaph

×

Figure 2

The role of the immune system in regulation of the commensal microflora.

Options: View larger image (or click on image) Download as PowerPoint
The role of the immune system in regulation of the commensal microflora....
(A) In healthy subjects, recovery from antibiotic treatment results in minor changes to the diversity of the commensal flora. Immune mechanisms, including production of commensal-specific IgA, effector and regulatory cytokines, and retinoic acid that can act on IECs and other immune cells, may all contribute to the maintenance of intestinal homeostasis. (B) In contrast, immunocompromised patients that have impaired B cell, T cell, and DC responses often do not recover bacterial diversity following antibiotic treatment; in some cases, a single genus dominates the flora.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts