Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The cellular response to hypoxia: tuning the system with microRNAs
Joseph Loscalzo
Joseph Loscalzo
Published October 25, 2010
Citation Information: J Clin Invest. 2010;120(11):3815-3817. https://doi.org/10.1172/JCI45105.
View: Text | PDF
Commentary

The cellular response to hypoxia: tuning the system with microRNAs

  • Text
  • PDF
Abstract

Adaptation to hypoxia is an essential cellular response controlled by the oxygen-sensitive master transcription factor hypoxia-inducible factor 1 (HIF-1). HIF-1 expression is also controlled by specific microRNAs and, in turn, controls the expression of other microRNAs, which fine-tune adaptation to low oxygen tension. In this issue of the JCI, Ghosh and colleagues identify a unique microRNA in hypoxic endothelial cells, miR424, that promotes HIF-1 stabilization and angiogenesis. The actions of this microRNA are considered in the context of the complex interactions that act to ensure optimal endothelial adaptation to this critical environmental condition.

Authors

Joseph Loscalzo

×

Figure 1

The endothelial cell response to hypoxia.

Options: View larger image (or click on image) Download as PowerPoint
The endothelial cell response to hypoxia.
The endothelium is poised betw...
The endothelium is poised between flowing blood and metabolizing tissue. Under the hypoxic (ischemic) conditions accompanying reductions in blood flow, the endothelial response is governed by HIF, as well as hypoxamirs, which are themselves either induced by HIF or affect HIF expression and action. The net effect is a metabolic switch to glycolysis and endothelial proliferation and differentiation, actions that facilitate durable adaptation to hypoxia sufficient to promote angiogenesis and restore blood flow. The text highlighted in the blue rectangle indicates how the work of Ghosh and colleagues integrates with current understanding of hypoxamirs.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts