Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice
Jan Gronych, … , Stefan Pfister, Peter Lichter
Jan Gronych, … , Stefan Pfister, Peter Lichter
Published March 14, 2011
Citation Information: J Clin Invest. 2011;121(4):1344-1348. https://doi.org/10.1172/JCI44656.
View: Text | PDF
Brief Report Oncology

An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice

  • Text
  • PDF
Abstract

Pilocytic astrocytoma (PA) is the most common type of primary brain tumor in children and the second most frequent cancer in childhood. Children with incompletely resected PA represent a clinically challenging patient cohort for whom conventional adjuvant therapies are only moderately effective. This has produced high clinical demand for testing of new molecularly targeted treatments. However, the development of new therapeutics for PA has been hampered by the lack of an adequate in vivo tumor model. Recent studies have identified activation of MAPK signaling, mainly by oncogenic BRAF activation, as a hallmark genetic event in the pathogenesis of human PA. Using in vivo retroviral somatic gene transfer into mouse neural progenitor cells, we have shown here that ectopic expression of the activated BRAF kinase domain is sufficient to induce PA in mice. Further in vitro analyses demonstrated that overexpression of activated BRAF led to increased proliferation of primary mouse astrocytes that could be inhibited by treatment with the kinase inhibitor sorafenib. Our in vivo model for PA shows that the activated BRAF kinase domain is sufficient to induce PA and highlights its role as a potential therapeutic target.

Authors

Jan Gronych, Andrey Korshunov, Josephine Bageritz, Till Milde, Manfred Jugold, Dolores Hambardzumyan, Marc Remke, Christian Hartmann, Hendrik Witt, David T.W. Jones, Olaf Witt, Sabine Heiland, Martin Bendszus, Eric C. Holland, Stefan Pfister, Peter Lichter

×

Figure 2

MRI and tumor histology.

Options: View larger image (or click on image) Download as PowerPoint
MRI and tumor histology.
(A) Hemispheric contrast-enhancing tumor induce...
(A) Hemispheric contrast-enhancing tumor induced with BRAF VE kin, as observed in T1-weighted MRI and coronal brain sections, showed overlapping expression of GFAP, the BRAF VE kin transgene (FLAG-tag), and Erk phosphorylation after immunohistochemical staining. (B) Tumors were also induced in the brainstem and cerebellum after expression of BRAF VE kin. (C) Higher-magnification views show the presence of transgene (FLAG), tumor delineation from normal tissue, and stronger GFAP staining of tumor cells compared with adjacent normal reactive astrocytes. Nestin staining of tumor cells was low compared to endothelial cells in neoplastic and normal tissue that exhibited a strong immunoreactivity. (D) Histological comparison between human PA and murine BRAF VE kin–induced PA. H&E-stained sections showed histological features of PA, such as piloid tumor cells, eosinophilic Rosenthal fibers, and moderate cellularity. GFAP staining revealed strong immunoreactivity with a tight network of elongated processes and protein droplets characteristic for PA. The low proliferation index of both tumors was represented by Ki67 staining. Tumors displayed Erk phosphorylation in both cases, indicating constitutive MAPK activation. Scale bars: 100 μm.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts