Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy
Seth A. Wander, … , Bryan T. Hennessy, Joyce M. Slingerland
Seth A. Wander, … , Bryan T. Hennessy, Joyce M. Slingerland
Published April 1, 2011
Citation Information: J Clin Invest. 2011;121(4):1231-1241. https://doi.org/10.1172/JCI44145.
View: Text | PDF
Science in Medicine

Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy

  • Text
  • PDF
Abstract

Mammalian target of rapamycin (mTOR) is a PI3K-related kinase that regulates cell growth, proliferation, and survival via mTOR complex 1 (mTORC1) and mTORC2. The mTOR pathway is often aberrantly activated in cancers. While hypoxia, nutrient deprivation, and DNA damage restrain mTORC1 activity, multiple genetic events constitutively activate mTOR in cancers. Here we provide a brief overview of the signaling pathways up- and downstream of mTORC1 and -2, and discuss the insights into therapeutic anticancer targets — both those that have been tried in the clinic with limited success and those currently under clinical development — that knowledge of these pathways gives us.

Authors

Seth A. Wander, Bryan T. Hennessy, Joyce M. Slingerland

×
Options: View larger image (or click on image) Download as PowerPoint
PI3K/TOR-KI clinical development status

PI3K/TOR-KI clinical development status


Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts