Thrombopoiesis, the process by which circulating platelets arise from megakaryocytes, remains incompletely understood. Prior studies suggest that megakaryocytes shed platelets in the pulmonary vasculature. To better understand thrombopoiesis and to develop a potential platelet transfusion strategy that is not dependent upon donors, of which there remains a shortage, we examined whether megakaryocytes infused into mice shed platelets. Infused megakaryocytes led to clinically relevant increases in platelet numbers. The released platelets were normal in size, displayed appropriate surface markers, and had a near-normal circulating half-life. The functionality of the donor-derived platelets was also demonstrated in vivo. The infused megakaryocytes mostly localized to the pulmonary vasculature, where they appeared to shed platelets. These data suggest that it may be unnecessary to generate platelets from ex vivo grown megakaryocytes to achieve clinically relevant increases in platelet numbers.
Rudy Fuentes, Yuhuan Wang, Jessica Hirsch, Cheng Wang, Lubica Rauova, G. Scott Worthen, M. Anna Kowalska, Mortimer Poncz
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 635 | 56 |
112 | 27 | |
Figure | 205 | 2 |
Table | 48 | 0 |
Supplemental data | 195 | 2 |
Citation downloads | 81 | 0 |
Totals | 1,276 | 87 |
Total Views | 1,363 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.