Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells
S. Tamir Rashid, … , David A. Lomas, Ludovic Vallier
S. Tamir Rashid, … , David A. Lomas, Ludovic Vallier
Published August 25, 2010
Citation Information: J Clin Invest. 2010;120(9):3127-3136. https://doi.org/10.1172/JCI43122.
View: Text | PDF
Technical Advance

Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells

  • Text
  • PDF
Abstract

Human induced pluripotent stem (iPS) cells hold great promise for advancements in developmental biology, cell-based therapy, and modeling of human disease. Here, we examined the use of human iPS cells for modeling inherited metabolic disorders of the liver. Dermal fibroblasts from patients with various inherited metabolic diseases of the liver were used to generate a library of patient-specific human iPS cell lines. Each line was differentiated into hepatocytes using what we believe to be a novel 3-step differentiation protocol in chemically defined conditions. The resulting cells exhibited properties of mature hepatocytes, such as albumin secretion and cytochrome P450 metabolism. Moreover, cells generated from patients with 3 of the inherited metabolic conditions studied in further detail (α1-antitrypsin deficiency, familial hypercholesterolemia, and glycogen storage disease type 1a) were found to recapitulate key pathological features of the diseases affecting the patients from which they were derived, such as aggregation of misfolded α1-antitrypsin in the endoplasmic reticulum, deficient LDL receptor–mediated cholesterol uptake, and elevated lipid and glycogen accumulation. Therefore, we report a simple and effective platform for hepatocyte generation from patient-specific human iPS cells. These patient-derived hepatocytes demonstrate that it is possible to model diseases whose phenotypes are caused by pathological dysregulation of key processes within adult cells.

Authors

S. Tamir Rashid, Sebastien Corbineau, Nick Hannan, Stefan J. Marciniak, Elena Miranda, Graeme Alexander, Isabel Huang-Doran, Julian Griffin, Lars Ahrlund-Richter, Jeremy Skepper, Robert Semple, Anne Weber, David A. Lomas, Ludovic Vallier

×

Figure 1

Generation of hepatocytes from disease-specific human iPS cells.

Options: View larger image (or click on image) Download as PowerPoint
Generation of hepatocytes from disease-specific human iPS cells.
(A) Pro...
(A) Protocol used to differentiate the disease-specific human iPS cell library into hepatocytes. (B) Immunostaining analyses for expression of the indicated proteins marking key stages of hepatocyte development (day 4, endoderm; day 20, hepatic progenitor; day 25, fetal hepatocyte). (C) Real-time PCR analysis for expression of genes marking key stages of disease-specific human iPS cell (hIPSC) differentiation to hepatocytes. Error bars denote SEM. (D) Fraction of cells expressing albumin after 25 days of hepatic differentiation, as shown by FACS analyses. (E) Morphologic analysis of disease-specific human iPS cell–derived hepatocytes (day 25) by transmission EM, showing the presence of apical microvilli and glycogen rosettes (numerals 1 and 2, respectively). Original magnification, ×20 (A); ×40 (B); ×3,000 (E). The data shown were taken from 1 line (patient 1; line 1), but are representative of all lines similarly characterized (Table 1).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts