Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis
Xingshen Sun, Hongshu Sui, John T. Fisher, Ziying Yan, Xiaoming Liu, Hyung-Ju Cho, Nam Soo Joo, Yulong Zhang, Weihong Zhou, Yaling Yi, Joann M. Kinyon, Diana C. Lei-Butters, Michelle A. Griffin, Paul Naumann, Meihui Luo, Jill Ascher, Kai Wang, Timothy Frana, Jeffrey J. Wine, David K. Meyerholz, John F. Engelhardt
Xingshen Sun, Hongshu Sui, John T. Fisher, Ziying Yan, Xiaoming Liu, Hyung-Ju Cho, Nam Soo Joo, Yulong Zhang, Weihong Zhou, Yaling Yi, Joann M. Kinyon, Diana C. Lei-Butters, Michelle A. Griffin, Paul Naumann, Meihui Luo, Jill Ascher, Kai Wang, Timothy Frana, Jeffrey J. Wine, David K. Meyerholz, John F. Engelhardt
View: Text | PDF
Technical Advance

Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments.

Authors

Xingshen Sun, Hongshu Sui, John T. Fisher, Ziying Yan, Xiaoming Liu, Hyung-Ju Cho, Nam Soo Joo, Yulong Zhang, Weihong Zhou, Yaling Yi, Joann M. Kinyon, Diana C. Lei-Butters, Michelle A. Griffin, Paul Naumann, Meihui Luo, Jill Ascher, Kai Wang, Timothy Frana, Jeffrey J. Wine, David K. Meyerholz, John F. Engelhardt

×

Figure 5

Airway defects observed in CFTR–/– kits.

Options: View larger image (or click on image) Download as PowerPoint
Airway defects observed in CFTR–/– kits.
   
(A and B) TEPD measurements...
(A and B) TEPD measurements in tracheal xenografts generated from CFTR+/+, CFTR+/–, and CFTR–/– kits. (A) Representative tracings of TEPD following sequential addition of the following drugs to the lumen of the airway xenografts: 100 μM amiloride (Amil), Cl–-free buffer, 10 μM forskolin/200 μM 8-ctp-cAMP (cAMP/Forsk), and 100 μM GlyH-101. (B) The cumulative data for transepithelial voltage responses (ΔVt) to the various buffer changes is shown for the indicated genotypes. Results depict the mean ± SEM transepithelial voltage responses for N measurements in 4 independent xenografts for each genotype (TEPD was evaluated 4 times for each xenograft on different days). (C and D) Analysis of submucosal gland secretion in tracheal xenografts from CFTR+/+, CFTR+/–, and CFTR–/– kits. (C) Representative en face photomicrographs of glandular secretory droplets are shown (several marked by arrows) at baseline (unstimulated), in response to 30-minute stimulation with 3 μM forskolin, and in response to 30-minute stimulation with 1 μM carbachol. Scale bar: 0.5 mm. (D) Averaged data for glandular secretory rates in response to 3 μM forskolin or 1 μM carbachol for the indicated genotypes. Results depict mean ± SEM (n = 10 CFTR+/+ and CFTR+/– xenografts and n = 13 CFTR–/– xenografts). †P < 0.05; *P < 0.05, using the Student’s t test. Typically 10–15 glands were measured for each xenograft sample. The average rate of secretion for all glands in a given sample was used to calculate the mean ± SEM. The total number of glands analyzed was 110 for CFTR+/+ and CFTR+/– xenografts and 151 for CFTR–/– xenografts.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts