Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis
Xingshen Sun, … , David K. Meyerholz, John F. Engelhardt
Xingshen Sun, … , David K. Meyerholz, John F. Engelhardt
Published August 25, 2010
Citation Information: J Clin Invest. 2010;120(9):3149-3160. https://doi.org/10.1172/JCI43052.
View: Text | PDF
Technical Advance

Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments.

Authors

Xingshen Sun, Hongshu Sui, John T. Fisher, Ziying Yan, Xiaoming Liu, Hyung-Ju Cho, Nam Soo Joo, Yulong Zhang, Weihong Zhou, Yaling Yi, Joann M. Kinyon, Diana C. Lei-Butters, Michelle A. Griffin, Paul Naumann, Meihui Luo, Jill Ascher, Kai Wang, Timothy Frana, Jeffrey J. Wine, David K. Meyerholz, John F. Engelhardt

×

Figure 1

A subset of CFTR–/– kits are born with MI.

Options: View larger image (or click on image) Download as PowerPoint
A subset of CFTR–/– kits are born with MI.
   
(A) The schematic diagram...
(A) The schematic diagram of the targeted neomycin gene insertion into CFTR exon 10 (E10) outlines the approach used to generate the model and indicates the locations of primers and probes used for genotyping. The results of PCR and Southern blot genotyping for a litter of 6 kits, with the genotypes indicated, are shown. The bottom panel depicts the detection of CFTR protein from the intestine by CFTR immunoprecipitation, followed by in vitro phosphorylation in the presence of [γ-32P]ATP and protein kinase A. The fully glycosylated band-C form of CFTR is shown. (B) Four kits at birth, with genotype indicated. (C) Intestines from kits at 36–48 hours after birth, with genotype indicated, demonstrating the variability in occurrence of MI and microcolon. Arrows mark perforations in the intestine caused by MI. (D) Histological analysis of the distal ileum/colon in H&E- or periodic acid-Schiff–stained (PAS-stained) sections for a CFTR+/+ kit and CFTR–/– kit suffering from MI. All kits with MI demonstrated similar histopathology, with enhanced mucous production (i.e., enhanced periodic acid-Schiff staining in purple). Those CFTR–/– kits without MI demonstrated histology similar to that in the control animals (data not shown). Scale bar: 200 μm.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts