Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
New roles for Notch in tuberous sclerosis
Warren S. Pear
Warren S. Pear
Published December 28, 2009
Citation Information: J Clin Invest. 2010;120(1):84-87. https://doi.org/10.1172/JCI41897.
View: Text | PDF
Commentary

New roles for Notch in tuberous sclerosis

  • Text
  • PDF
Abstract

Tuberous sclerosis complex (TSC) is a dominantly inherited disease that is characterized by the growth of multiple benign tumors that are often difficult to treat. TSC is caused by mutations that inactivate the TSC1 or TSC2 genes, which normally function to inhibit activation of mammalian target of rapamycin signaling. In this issue of the JCI, two studies reported by Karbowniczek et al. and Ma et al. link TSC inactivation with activated Notch signaling (see the related articles beginning on pages 93 and 103, respectively). Using a variety of approaches, both studies show that inactivation of TSC leads to Notch1 activation. Furthermore, studies in tumor cells suggest that inhibiting Notch slows growth of the tumor cells. Although much remains to be learned about the precise mechanisms by which TSC loss leads to Notch activation, the newly identified link of TSC to Notch provides the rationale for testing Notch inhibitors in TSC-associated tumors.

Authors

Warren S. Pear

×

Figure 1

Potential functions of Notch downstream of TSC.

Options: View larger image (or click on image) Download as PowerPoint
Potential functions of Notch downstream of TSC.
This schematic illustrat...
This schematic illustrates the potential mechanisms of Notch activation proposed by Karbowniczek et al. (9) and Ma et al. (10) in this issue of the JCI. TSC1 and TSC2 heterodimerize to inhibit activation of the Rheb-GTPase. In the absence of TSC1 or TSC2, Rheb is constitutively active, which leads to Notch activation by a TORC1-independent mechanism, as suggested by Karbowniczek et al. (9), and/or a TORC1-dependent mechanism, as suggested by Ma et al. (10). The TORC1-independent mechanism of Notch1 activation remains to be elucidated, as indicated by the dotted line and question mark. In the TORC1-dependent pathway described by Ma et al., TORC1 activates STAT3, which leads to p63 upregulation of the Notch ligand Jagged1 and Notch1 activation. Notch is likely to influence cell differentiation and proliferation; however, it may also have effects on cell survival, cellular metabolism, and other cellular processes. Additional, important TORC1 targets are ribosomal protein S6 kinase polypeptide 1 (S6K1) and eukaryotic translation initiation factor 4e–binding protein 1 (4E-BP1), which have important functions in ribosome recruitment and protein translation. mTOR inhibitors act on TORC1; Notch inhibitors, such as GSI, act to prevent Notch signaling. It remains to be elucidated whether Notch activation occurs by a cell-autonomous or a non–cell-autonomous mechanism in TSC.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts