Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Homocysteine-mediated thrombosis and angiostasis in vascular pathobiology
Joseph Loscalzo
Joseph Loscalzo
Published October 19, 2009
Citation Information: J Clin Invest. 2009;119(11):3203-3205. https://doi.org/10.1172/JCI40924.
View: Text | PDF
Commentary

Homocysteine-mediated thrombosis and angiostasis in vascular pathobiology

  • Text
  • PDF
Abstract

The mechanisms by which homocysteine contributes to atherothrombosis are complex and their in vivo relevance uncertain. In this issue of the JCI, Jacovina and colleagues report a unique in vivo mechanism by which homocysteine may contribute to vascular disease (see the related article beginning on page 3384). This group had previously reported that homocysteine impairs endothelial cell surface plasminogen activation by posttranslationally modifying annexin A2, the coreceptor for plasminogen and tissue plasminogen activator. They now show that an annexin A2–deficient mouse rendered hyperhomocysteinemic by dietary means has impaired fibrinolysis, perivascular fibrin persistence, and attenuated angiogenesis (angiostasis). Potential mechanisms by which homocysteine-dependent changes in endothelial phenotype link thrombosis to angiostasis are reviewed and their relationship to homocysteine-dependent vascular disease considered.

Authors

Joseph Loscalzo

×

Figure 1

Direct and indirect effects of homocysteine on angiogenesis.

Options: View larger image (or click on image) Download as PowerPoint
Direct and indirect effects of homocysteine on angiogenesis.
Lines with ...
Lines with arrows indicate permissive actions, and lines with end bars indicate inhibitory actions. Red lines indicate the contributions of the work of Jacovina and colleagues (17) to these pathways. Homocysteine (HC) induces tissue factor (TF) expression on the endothelial cell and inhibits annexin A2–dependent plasminogen (PGN) activation by TPA. In addition, homocysteine increases plasminogen activator inhibitor-1 (PAI-1) expression to impair further fibrinolysis. By activating tissue factor expression, homocysteine promotes local generation of thrombin, which converts fibrinogen (FGN) to fibrin, impairs fibrinolysis by increasing TAFI, and activates factor XIII (FXIII). FXIIIa, in turn, not only crosslinks fibrin, but also crosslinks the integrin αVβ3 to VEGFR2, which stimulates angiogenesis. Thrombin, along with factor Xa (FXa), activates MMPs (to aMMPs) to promote endothelial cell migration and angiogenesis. Offsetting these indirect angiogenic effects of thrombin are its inhibitory effects, which include factor XIIIa–mediated inhibition of thrombospondin-1 (TSP-1) and the generation of angiogenesis inhibitors endostatin and angiostatin by MMPs acting on collagen 18 and plasminogen, respectively. αVβ3-VEGFR2, factor XIIIa–crosslinked αVβ3-VEGFR2; A2, annexin A2; FDP, fibrin degradation product; Pn, plasmin.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts